首页> 外文期刊>Computers & mathematics with applications >Generalized conjugate direction method for solving a class of generalized coupled Sylvester-conjugate transpose matrix equations over generalized Hamiltonian matrices
【24h】

Generalized conjugate direction method for solving a class of generalized coupled Sylvester-conjugate transpose matrix equations over generalized Hamiltonian matrices

机译:广义哈密顿矩阵上一类广义耦合Sylvester-共轭转置矩阵方程的广义共轭方向法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a generalized conjugate direction (GCD) method for finding the generalized Hamiltonian solutions of a class of generalized coupled Sylvester-conjugate transpose matrix equations is proposed. Furthermore, it is proved that the algorithm can compute the least Frobenius norm generalized Hamiltonian solution group of the problem by choosing a special initial matrix group within a finite number of iterations in the absence of round-off errors. Numerical examples are also presented to illustrate the efficiency of the algorithm. (C) 2017 Elsevier Ltd. All rights reserved.
机译:提出了一种广义共轭方向(GCD)方法,用于寻找一类广义耦合Sylvester-共轭转置矩阵方程的广义哈密顿解。此外,证明了该算法可以在不存在舍入误差的情况下,通过在有限的迭代次数内选择一个特殊的初始矩阵组,来计算问题的最小Frobenius范数广义汉密尔顿解组。数值例子也被用来说明算法的效率。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号