首页> 外文期刊>Computer vision and image understanding >Visual Word Proximity And Linguistics For Semantic Video Indexing And Near-duplicate Retrieval
【24h】

Visual Word Proximity And Linguistics For Semantic Video Indexing And Near-duplicate Retrieval

机译:视觉词的邻近性和语言学,用于语义视频索引和近乎重复的检索

获取原文
获取原文并翻译 | 示例

摘要

Bag-of-visual-words (BoW) has recently become a popular representation to describe video and image content. Most existing approaches, nevertheless, neglect inter-word relatedness and measure similarity by bin-to-bin comparison of visual words in histograms. In this paper, we explore the linguistic and onto-logical aspects of visual words for video analysis. Two approaches, soft-weighting and constraint-based earth mover's distance (CEMD), are proposed to model different aspects of visual word linguistics and proximity. In soft-weighting, visual words are cleverly weighted such that the linguistic meaning of words is taken into account for bin-to-bin histogram comparison. In CEMD, a cross-bin matching algorithm is formulated such that the ground distance measure considers the linguistic similarity of words. In particular, a BoW ontology which hierarchically specifies the hyponym relationship of words is constructed to assist the reasoning. We demonstrate soft-weighting and CEMD on two tasks: video semantic indexing and near-duplicate keyframe retrieval. Experimental results indicate that soft-weighting is superior to other popular weighting schemes such as term frequency (TF) weighting in large-scale video database. In addition, CEMD shows excellent performance compared to cosine similarity in near-duplicate retrieval.
机译:视觉词袋(BoW)最近已成为描述视频和图像内容的流行表示形式。但是,大多数现有方法都忽略了词间的相关性,并通过直方图中视觉词的箱对箱比较来衡量相似度。在本文中,我们探讨了用于视频分析的视觉单词的语言学和本体论方面。提出了两种方法,即软加权和基于约束的推土机距离(CEMD),以对视觉单词语言学和邻近性的不同方面进行建模。在软加权中,对视觉单词进行巧妙的加权,以便在bin-bin直方图比较中考虑单词的语言含义。在CEMD中,制定了一种跨仓匹配算法,使得地面距离度量考虑了单词的语言相似性。特别地,构造了分层地指定单词的下位词关系的BoW本体来辅助推理。我们在两项任务上演示了软加权和CEMD:视频语义索引和近乎重复的关键帧检索。实验结果表明,软加权优于其他流行的加权方案,例如大型视频数据库中的术语频率(TF)加权。此外,与近余重复检索中的余弦相似度相比,CEMD表现出出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号