首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >IR Feature Embedded BOF Indexing Method for Near-Duplicate Video Retrieval
【24h】

IR Feature Embedded BOF Indexing Method for Near-Duplicate Video Retrieval

机译:IR特征嵌入式BOF索引方法,用于近复制视频检索

获取原文
获取原文并翻译 | 示例

摘要

Due to the explosive increase in online videos, near-duplicate video retrieval (NDVR) has attracted much researcher attention. NDVR has very wide applications, such as copyright protection, online video monitoring, and automatic video tagging. Local features serve as elementary building blocks in many NDVR algorithms, and most of them exploit the local volume information using a bag of features (BOF) representation. However, such representation ignores potentially valuable information about the global distribution of interest points. Moreover, the discriminative power of the local descriptors is significantly reduced by the quantizer in BOF. Our motivation is that if we use the global features to classify the same or similar keyframes into the same class, it will be very useful in improving the performance of NDVR. In this paper, we present an improved radon transform (IR) feature which captures the detailed global geometrical distribution of interest points. It is calculated by using the 2D discrete Radon transform, and then applying a principal component analysis. Such IR feature is not only invariant to the geometry transformations but also robust to the noises. In addition, we propose a fusion strategy to combine the BOF representation with the global IR feature for further improving the recognition accuracy. Convincing experimental results on several publicly available datasets demonstrate that our proposed approach outperforms the state-of-the-art approaches in NDVR.
机译:由于在线视频的爆炸性增加,近重复的视频检索(NDVR)吸引了众多研究员的关注。 NDVR具有很广泛的应用,例如版权保护,在线视频监控和自动视频标记。本地功能用作许多NDVR算法中的基本构建块,并且大多数利用一系列特征(BOF)表示来利用本地卷信息。但是,这种代表忽略了有关全球兴趣点分配的潜在有价值的信息。此外,通过BOF中的量化器显着降低了本地描述符的辨别力。我们的动机是,如果我们使用全局功能将相同或相似的关键帧分类为同一类,则在提高NDVR的性能方面将非常有用。在本文中,我们提出了一种改进的氡变换(IR)特征,其捕获了感兴趣点的详细全局几何分布。它是通过使用2D离散氡变换来计算,然后应用主成分分析。此类IR功能不仅不可于几何变换,而且对噪音也很强大。此外,我们提出了一种融合策略,将BOF表示与全局IR功能相结合,以进一步提高识别准确性。在若干公开的数据集上说明了实验结果表明,我们的建议方法优于NDVR的最先进的方法。

著录项

  • 来源
  • 作者单位

    Xian Univ Technol Fac Printing Packaging Engn & Digital Media Techn Xian 710048 Shaanxi Peoples R China|Printing & Packaging Engn Technol Res Ctr Shaanxi Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Fac Printing Packaging Engn & Digital Media Techn Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Fac Printing Packaging Engn & Digital Media Techn Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Fac Printing Packaging Engn & Digital Media Techn Xian 710048 Shaanxi Peoples R China;

    Xian Univ Technol Fac Printing Packaging Engn & Digital Media Techn Xian 710048 Shaanxi Peoples R China|Printing & Packaging Engn Technol Res Ctr Shaanxi Xian 710048 Shaanxi Peoples R China;

    Xian Fanyi Univ Dept Publ Courses Xian 710005 Shaanxi Peoples R China;

    Xian Univ Technol Fac Printing Packaging Engn & Digital Media Techn Xian 710048 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Content based retrieval; similarity search; near duplicate video retrieval; video indexing;

    机译:基于内容的检索;相似性搜索;近复制视频检索;视频索引;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号