首页> 外文期刊>ACM transactions on multimedia computing communications and applications >A Hamming Embedding Kernel with Informative Bag-of-Visual Words for Video Semantic Indexing
【24h】

A Hamming Embedding Kernel with Informative Bag-of-Visual Words for Video Semantic Indexing

机译:用于信息语义索引的带有可视化视觉单词的汉明嵌入内核

获取原文
获取原文并翻译 | 示例

摘要

In this article, we propose a novel Hamming embedding kernel with informative bag-of-visual words to address two main problems existing in traditional BoW approaches for video semantic indexing. First, Hamming embedding is employed to alleviate the information loss caused by SIFT quantization. The Hamming distances between keypoints in the same cell are calculated and integrated into the SVM kernel to better discriminate different image samples. Second, to highlight the concept-specific visual information, we propose to weight the visual words according to their informativeness for detecting specific concepts. We show that our proposed kernels can significantly improve the performance of concept detection.
机译:在本文中,我们提出了一种新颖的Hamming嵌入内核,该内核具有内容丰富的可视化单词,以解决传统BoW视频语义索引方法中存在的两个主要问题。首先,采用汉明嵌入来减轻由SIFT量化引起的信息丢失。计算同一单元中关键点之间的汉明距离,并将其集成到SVM内核中,以更好地区分不同的图像样本。其次,为了突出显示特定于概念的视觉信息,我们建议根据视觉单词的信息性来对视觉单词进行加权,以检测特定的概念。我们表明,我们提出的内核可以显着提高概念检测的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号