首页> 外文期刊>The Scientific World Journal >Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System
【24h】

Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

机译:关键字匹配索引系统的语义信息检索模型混合本体

获取原文
获取原文并翻译 | 示例

摘要

Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.
机译:本体论是对一组用户通用的信息域概念的发展和阐明的过程。在信息检索中建立本体是开发用户所需相关信息的搜索效果的常规方法。在最近的计算中,具有历史或信息域的关键字匹配过程对于协助特定输入查询的最佳匹配非常重要。该研究提出了一种更好的信息检索查询机制,该机制将本体查询与关键词搜索相结合。将基于本体的查询更改为主要顺序,以便确定逻辑不确定性,该逻辑不确定性用于将查询路由到适当的服务器。匹配算法是计算机科学和人工智能领域研究的热点。在文本匹配中,研究语义模型和查询语义匹配条件更加可靠。该研究开发了本体领域中输入查询与信息之间的语义匹配结果。贡献算法是一种混合方法,该方法基于匹配从查询和信息字段中提取的实例。查询和信息领域专注于语义匹配,以发现最佳匹配并推进执行过程。总之,与标准本体相比,语义网中的混合本体足以检索文档。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号