首页> 外文期刊>Computer speech and language >An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder
【24h】

An automated assessment framework for atypical prosody and stereotyped idiosyncratic phrases related to autism spectrum disorder

机译:与自闭症谱系障碍有关的非典型韵律和定型特质词组的自动评估框架

获取原文
获取原文并翻译 | 示例

摘要

Autism Spectrum Disorder (ASD), a neurodevelopmental disability, has become one of the high incidence diseases among children. Studies indicate that early diagnosis and intervention treatments help to achieve positive longitudinal outcomes. In this paper, we focus on the speech and language abnormalities of young children with ASD and present an automated assessment framework in quantifying atypical prosody and stereotyped idiosyncratic phrases related to ASD. For detecting atypical prosody from speech, we propose both the hand-crafted feature based method as well as the end-to-end deep learning framework. First, we use the Open-SMILE toolkit to extract utterance level high dimensional acoustic features followed by a support vector machine (SVM) backend as the conventional baseline. Second, we propose several end-to-end deep neural network setups and configurations to model the atypical prosody label directly from the constant Q transform spectrogram of speech. Third, we apply cross-validation on the training data to perform segments selection and enhance the subject level classification performance. Fourth, we fuse the deep learning based methods with the conventional baseline at the score level to further enhance the overall system performance. For detecting the stereotyped idiosyncratic usage of words or phrases from speech transcripts, we adopt language model, dependency treebank and Term Frequency-Inverse Document Frequency (TF-IDF) in addition to Linguistic Inquiry and Word Count software (LIWC) methods to extract a set of text features followed by a standard SVM backend. We collect a database of spontaneous Mandarin speech recorded during the Autism Diagnostic Observation Schedule (ADOS) Module 2 and Module 3 sessions. The Module 2 part consists of 118 children while the Module 3 part includes 71 children. Experimental results on this database show that our proposed methods can effectively predict the atypical prosody and stereotyped idiosyncratic phrases codes for young children with the risk of ASD. On the two categories classification task, the unweighted accuracy of the aforementioned two tasks are 88.1% and 77.8%, respectively. (C) 2018 Published by Elsevier Ltd.
机译:自闭症谱系障碍(ASD)是一种神经发育障碍,已成为儿童中的高发疾病之一。研究表明,早期诊断和干预治疗有助于取得积极的纵向结果。在本文中,我们关注于ASD幼儿的言语和语言异常,并提出了一种自动评估框架,用于量化与ASD相关的非典型韵律和定型特质词组。为了从语音中检测非典型韵律,我们提出了基于手工特征的方法以及端到端深度学习框架。首先,我们使用Open-SMILE工具包提取发声级高维声学特征,然后使用支持向量机(SVM)后端作为常规基线。其次,我们提出了几种端到端的深度神经网络设置和配置,以直接根据语音的恒定Q变换声谱图对非典型韵律标签进行建模。第三,我们对训练数据进行交叉验证,以进行细分选择并提高学科水平的分类性能。第四,我们将基于深度学习的方法与常规基线在得分级别上融合在一起,以进一步提高整体系统性能。为了检测语音记录中单词或短语的刻板习惯用法,除了语言查询和单词计数软件(LIWC)方法之外,我们还采用语言模型,依赖树库和术语频率逆文档频率(TF-IDF)来提取集合文本功能,然后是标准SVM后端。我们收集自闭症诊断观察时间表(ADOS)模块2和模块3会话期间记录的自发普通话语音数据库。第2单元由118个子代组成,而第3单元由71个子代组成。在该数据库上的实验结果表明,我们提出的方法可以有效地预测具有ASD风险的幼儿的非典型韵律和刻板的特质短语代码。在两类分类任务中,上述两项任务的未加权准确度分别为88.1%和77.8%。 (C)2018由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号