首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A stabilized Nitsche cut finite element method for the Oseen problem
【24h】

A stabilized Nitsche cut finite element method for the Oseen problem

机译:Oseen问题的稳定Nitsche割有限元方法

获取原文
获取原文并翻译 | 示例

摘要

We provide the numerical analysis for a Nitsche-based cut finite element formulation for the Oseen problem, which has been originally presented for the incompressible Navier-Stokes equations by Schott and Wall (2014) and allows the boundary of the domain to cut through the elements of an easy-to-generate background mesh. The formulation is based on the continuous interior penalty (CIP) method of Burman et al. (2006) which penalizes jumps of velocity and pressure gradients over inter-element faces to counteract instabilities arising for high local Reynolds numbers and the use of equal order interpolation spaces for the velocity and pressure. Since the mesh does not fit the boundary, Dirichlet boundary conditions are imposed weakly by a stabilized Nitsche-type approach. The addition of CIP-like ghost-penalties in the boundary zone allows to prove that our method is inf-sup stable and to derive optimal order a priori error estimates in an energy-type norm, irrespective of how the boundary cuts the underlying mesh. All applied stabilization techniques are developed with particular emphasis on low and high Reynolds numbers. Two-and three-dimensional numerical examples corroborate the theoretical findings. Finally, the proposed method is applied to solve the transient incompressible Navier-Stokes equations on a complex geometry. (C) 2017 Elsevier B.V. All rights reserved.
机译:我们为基于Oseen问题的基于Nitsche的切分有限元公式提供了数值分析,该公式最初是由Schott和Wall(2014)针对不可压缩的Navier-Stokes方程提出的,并允许区域的边界切开元素易于生成的背景网格。该公式基于Burman等人的连续内部罚分(CIP)方法。 (2006年)惩罚了元素间面的速度和压力梯度的跳跃,以抵消因局部雷诺数高而引起的不稳定性,以及对速度和压力使用等阶插值空间。由于网格不适合边界,因此稳定的Nitsche型方法会弱地施加Dirichlet边界条件。在边界区域中添加类似CIP的幻影罚分可以证明我们的方法是稳定的,并且可以在能量类型范数中得出最优阶的先验误差估计,而与边界如何切割基础网格无关。开发了所有应用的稳定化技术,并特别强调了低雷诺数和高雷诺数。二维和三维数值例子证实了理论发现。最后,将所提出的方法应用于求解复杂几何上的瞬态不可压缩Navier-Stokes方程。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号