首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions
【24h】

A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions

机译:具有一般Navier边界条件的Oseen问题的Nitsche割有限元方法

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn this work a Nitsche-based imposition of generalized Navier conditions on cut meshes for the Oseen problem is presented. Other methods from literature dealing with the generalized Navier condition impose this condition by means of substituting the tangential Robin condition in a classical Galerkin way. These methods work fine for a large slip length coefficient but lead to conditioning and stability issues when it approaches zero. We introduce a novel method for the weak imposition of the generalized Navier condition which remains well-posed and stable for arbitrary choice of slip length, including zero. The method proposed here builds on the formulation done by Juntunen and Stenberg (2009). They impose a Robin condition for the Poisson problem by means of Nitsche’s method for an arbitrary combination of the Dirichlet and Neumann parts of the condition. The analysis conducted for the proposed method is done in a similar fashion as in Massing et al. (2018), but is done here for a more general type of boundary condition. The analysis proves stability for all flow regimes and all choices of slip lengths. Also anL2-optimal estimate for the velocity error is shown, which was not conducted in the previously mentioned work. A numerical example is carried out for varying slip lengths to verify the robustness and stability of the method with respect to the choice of slip length. Even though proofs and formulations are presented for the more general case of an unfitted grid method, they can easily be reduced to the simpler case of a boundary-fitted grid with the removal of the ghost-penalty stabilization terms.
机译: 摘要 在这项工作中,针对Oseen问题,在切网格上给出了基于Nitsche的广义Navier条件的强加。文献中涉及广义Navier条件的其他方法通过以经典Galerkin方式替代切向Robin条件来强加此条件。这些方法适用于较大的滑移长度系数,但当其接近零时会导致调节和稳定性问题。我们针对弱Navigation条件引入了一种新方法,该条件对于任意选择的滑动长度(包括零)仍然保持良好的定位和稳定性。本文提出的方法建立在Juntunen和Stenberg(2009)的公式基础上。他们通过Nitsche的方法将条件的Dirichlet部分和Neumann部分的任意组合强加给Poisson问题一个Robin条件。针对提出的方法进行的分析以与Massing等类似的方式进行。 (2018年),但此处针对边界条件的更一般类型进行了此操作。分析证明了在所有流动状态和滑移长度的所有选择中的稳定性。还有一个 L 2 -显示了速度误差的最佳估计,这在前面提到的工作中没有进行。数值示例针对不同的滑移长度进行了验证,以验证该方法在滑移长度选择方面的稳健性和稳定性。即使提供了针对非拟合网格方法的更一般情况的证明和公式,也可以通过删除重影罚金稳定项而轻松地将它们简化为边界拟合网格的简单情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号