首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements
【24h】

The non-symmetric Nitsche method for the parameter-free imposition of weak boundary and coupling conditions in immersed finite elements

机译:浸入有限元中无边界弱条件和耦合条件的非对称尼采方法

获取原文
获取原文并翻译 | 示例

摘要

We explore the use of the non-symmetric Nitsche method for the weak imposition of boundary and coupling conditions along interfaces that intersect through a finite element mesh. In contrast to symmetric Nitsche methods, it does not require stabilization and therefore does not depend on the appropriate estimation of stabilization parameters. We first review the available mathematical background, recollecting relevant aspects of the method from a numerical analysis viewpoint. We then compare accuracy and convergence of symmetric and non-symmetric Nitsche methods for a Laplace problem, a Kirchhoff plate, and in 3D elasticity. Our numerical experiments confirm that the non-symmetric method leads to reduced accuracy in the L-2 error, but exhibits superior accuracy and robustness for derivative quantities such as diffusive flux, bending moments or stress. Based on our numerical evidence, the non-symmetric Nitsche method is a viable alternative for problems with diffusion-type operators, in particular when the accuracy of derivative quantities is of primary interest. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们探索了使用非对称Nitsche方法对沿有限元网格相交的界面的边界和耦合条件施加弱势的方法。与对称Nitsche方法相比,它不需要稳定化,因此不依赖于稳定化参数的适当估计。我们首先查看可用的数学背景,然后从数值分析的角度回顾该方法的相关方面。然后,我们针对Laplace问题,Kirchhoff板以及3D弹性比较对称和非对称Nitsche方法的准确性和收敛性。我们的数值实验证实,非对称方法会导致L-2误差的精度降低,但对于诸如扩散通量,弯矩或应力之类的导数,则具有更高的精度和鲁棒性。根据我们的数值证据,非对称Nitsche方法是解决扩散型算子问题的可行替代方法,尤其是在微分数量的精度至关重要的情况下。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号