首页> 美国卫生研究院文献>Journal of Biomechanical Engineering >Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy
【2h】

Biaxial Tension of Fibrous Tissue: Using Finite Element Methods to Address Experimental Challenges Arising From Boundary Conditions and Anisotropy

机译:纤维组织的双轴拉伸:使用有限元方法解决边界条件和各向异性带来的实验挑战

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planar biaxial tension remains a critical loading modality for fibrous soft tissue and is widely used to characterize tissue mechanical response, evaluate treatments, develop constitutive formulas, and obtain material properties for use in finite element studies. Although the application of tension on all edges of the test specimen represents the in situ environment, there remains a need to address the interpretation of experimental results. Unlike uniaxial tension, in biaxial tension the applied forces at the loading clamps do not transmit fully to the region of interest (ROI), which may lead to improper material characterization if not accounted for. In this study, we reviewed the tensile biaxial literature over the last ten years, noting experimental and analysis challenges. In response to these challenges, we used finite element simulations to quantify load transmission from the clamps to the ROI in biaxial tension and to formulate a correction factor that can be used to determine ROI stresses. Additionally, the impact of sample geometry, material anisotropy, and tissue orientation on the correction factor were determined. Large stress concentrations were evident in both square and cruciform geometries and for all levels of anisotropy. In general, stress concentrations were greater for the square geometry than the cruciform geometry. For both square and cruciform geometries, materials with fibers aligned parallel to the loading axes reduced stress concentrations compared to the isotropic tissue, resulting in more of the applied load being transferred to the ROI. In contrast, fiber-reinforced specimens oriented such that the fibers aligned at an angle to the loading axes produced very large stress concentrations across the clamps and shielding in the ROI. A correction factor technique was introduced that can be used to calculate the stresses in the ROI from the measured experimental loads at the clamps. Application of a correction factor to experimental biaxial results may lead to more accurate representation of the mechanical response of fibrous soft tissue.
机译:平面双轴张力仍然是纤维状软组织的关键加载方式,被广泛用于表征组织的机械反应,评估治疗方法,开发本构公式以及获得用于有限元研究的材料特性。尽管在试样的所有边缘上施加张力代表了原位环境,但是仍然需要解决对实验结果的解释。与单轴张力不同,在双轴张力中,在加载夹具上施加的力不会完全传递到目标区域(ROI),如果不加以考虑,可能会导致材料表征不当。在这项研究中,我们回顾了过去十年中的拉伸双轴文献,并指出了实验和分析方面的挑战。为了应对这些挑战,我们使用了有限元模拟来量化从夹具到双轴张力中ROI的载荷传递,并制定了可用于确定ROI应力的校正因子。此外,确定了样品几何形状,材料各向异性和组织取向对校正因子的影响。在正方形和十字形几何形状以及所有水平的各向异性中,都明显出现了较大的应力集中。通常,正方形几何结构的应力集中大于十字形几何结构。对于方形和十字形几何形状,与各向同性组织相比,纤维平行于加载轴排列的材料与各向同性组织相比降低了应力集中,导致更多的施加载荷转移到ROI。相反,纤维增强的试样的取向使得纤维与加载轴成一定角度排列时,会在夹具上产生很大的应力集中,并在ROI中产生屏蔽作用。引入了一种校正因子技术,该技术可用于根据在夹具处测得的实验负载来计算ROI中的应力。将校正因子应用于实验双轴结果可能会导致更精确地表示纤维软组织的机械反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号