首页> 外文期刊>Computational Mechanics >Development of a new meshless — point weighted least-squares (PWLS) method for computational mechanics
【24h】

Development of a new meshless — point weighted least-squares (PWLS) method for computational mechanics

机译:新的无网格点加权最小二乘(PWLS)方法用于计算力学

获取原文
获取原文并翻译 | 示例

摘要

A truly meshless approach, point weighted least-squares (PWLS) method, is developed in this paper. In the present PWLS method, two sets of distributed points are adopted, i.e. fields node and collocation point. The field nodes are used to construct the trial functions. In the construction of the trial functions, the radial point interpolation based on local supported radial base function are employed. The collocation points are independent of the field nodes and adopted to form the total residuals of the problem. The weighted least-squares technique is used to obtain the solution of the problem by minimizing the functional of the summation of residuals. The present PWLS method possesses more advantages compared with the conventional collocation methods, e.g. it is very stable; the boundary conditions can be easily enforced; and the final coefficient matrix is symmetric. Several numerical examples of one- and two-dimensional ordinary and partial differential equations (ODEs and PDEs) are presented to illustrate the performance of the present PWLS method. They show that the developed PWLS method is accurate and efficient for the implementation.
机译:本文开发了一种真正的无网格方法,即点加权最小二乘(PWLS)方法。在当前的PWLS方法中,采用两组分布点,即场节点和并置点。现场节点用于构造试用功能。在试验函数的构造中,采用了基于局部支持的径向基函数的径向点插值。搭配点独立于现场节点,并被用来形成问题的总残差。加权最小二乘技术用于通过最小化残差求和的函数来获得问题的解决方案。与传统的并置方法相比,本发明的PWLS方法具有更多的优点。它非常稳定;边界条件很容易执行;最终的系数矩阵是对称的。给出了一维和二维常微分方程和偏微分方程(ODE和PDE)的几个数值示例,以说明本PWLS方法的性能。他们表明,所开发的PWLS方法对于实施而言是准确而有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号