首页> 外文期刊>Computational management science >Sparse precision matrices for minimum variance portfolios
【24h】

Sparse precision matrices for minimum variance portfolios

机译:最小方差组合的稀疏精度矩阵

获取原文
获取原文并翻译 | 示例

摘要

Financial crises are typically characterized by highly positively correlated asset returns due to the simultaneous distress on almost all securities, high volatilities and the presence of extreme returns. In the aftermath of the 2008 crisis, investors were prompted even further to look for portfolios that minimize risk and can better deal with estimation error in the inputs of the asset allocation models. The minimum variance portfolio a la Markowitz is considered the reference model for risk minimization in equity markets, due to its simplicity in the optimization as well as its need for just one input estimate: the inverse of the covariance estimate, or the so-called precision matrix. In this paper, we propose a data-driven portfolio framework based on two regulariza-tion methods, glasso and tlasso, that provide sparse estimates of the precision matrix by penalizing its L_1-norm. Glasso and tlasso rely on asset returns Gaussianity or t-Student assumptions, respectively. Simulation and real-world data results support the proposed methods compared to state-of-art approaches, such as random matrix and Ledoit-Wolf shrinkage.
机译:由于几乎所有证券,高挥发性和极端回报的存在,金融危机通常具有高度肯定的资产回报。在2008年危机的后果中,甚至进一步提示投资者寻找最小化风险的投资组合,并更好地处理资产分配模型的输入中的估计误差。 La Markowitz的最小方差纲要被认为是股票市场中风险最小化的参考模型,因为它在优化中的简单性以及只需要一个输入估计的情况下:协方差估计的反比力,或所谓的精度矩阵。在本文中,我们提出了一种基于两种规范化方法,Glasso和Tlasso的数据驱动的产品组合框架,通过惩罚其L_1-Norm来提供精确矩阵的稀疏估计。 Glasso和Tlasso依赖资产分别返回高斯或学生假设。仿真和现实世界数据结果支持所提出的方法与最先进的方法相比,例如随机矩阵和地板狼萎缩。

著录项

  • 来源
    《Computational management science》 |2019年第3期|375-400|共26页
  • 作者单位

    Department of Management Economics and Quantitative Methods University of Bergamo Via dei Caniana 2 24127 Bergamo BG Italy Department of Finance Faculty of Economics VSB-TU Ostrava Sokolska 33 701 21 Ostrava 1 Ostrava Czech Republic;

    Department of Management Economics and Quantitative Methods University of Bergamo Via dei Caniana 2 24127 Bergamo BG Italy;

    Department of Economics and Management University of Trento via Inama 5 38122 Trento Italy Department of Finance and Accounting EBS Universitaet fuer Wirtschaft und Recht Gustav-Stresemann-Ring 3 65189 Wiesbaden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Minimum variance; Precision matrix; Graphical lasso; Tlasso;

    机译:最小方差;精确矩阵;图形套索;Tlasso.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号