首页> 外文期刊>Computational management science >Sparse precision matrices for minimum variance portfolios
【24h】

Sparse precision matrices for minimum variance portfolios

机译:最小方差组合的稀疏精度矩阵

获取原文
获取原文并翻译 | 示例

摘要

Financial crises are typically characterized by highly positively correlated asset returns due to the simultaneous distress on almost all securities, high volatilities and the presence of extreme returns. In the aftermath of the 2008 crisis, investors were prompted even further to look for portfolios that minimize risk and can better deal with estimation error in the inputs of the asset allocation models. The minimum variance portfolio a la Markowitz is considered the reference model for risk minimization in equity markets, due to its simplicity in the optimization as well as its need for just one input estimate: the inverse of the covariance estimate, or the so-called precision matrix. In this paper, we propose a data-driven portfolio framework based on two regulariza-tion methods, glasso and tlasso, that provide sparse estimates of the precision matrix by penalizing its L_1-norm. Glasso and tlasso rely on asset returns Gaussianity or t-Student assumptions, respectively. Simulation and real-world data results support the proposed methods compared to state-of-art approaches, such as random matrix and Ledoit-Wolf shrinkage.
机译:金融危机的典型特征是,由于几乎所有证券同时陷入困境,高波动性和存在极高的回报,因此资产回报高度正相关。在2008年危机后,甚至进一步提示投资者寻找可将风险降至最低并能更好地处理资产分配模型输入中的估计误差的投资组合。 Markowitz的最小方差投资组合被认为是股票市场中风险最小化的参考模型,这是因为它在优化中非常简单,并且仅需要一个输入估计:协方差估计的倒数,即所谓的精确度矩阵。在本文中,我们提出了基于两种正则化方法(glasso和tlasso)的数据驱动的投资组合框架,该方法通过惩罚L_1范数来提供精度矩阵的稀疏估计。 Glasso和tlasso分别依赖于资产收益率的高斯或t-Student假设。与最新方法(例如随机矩阵和Ledoit-Wolf收缩)相比,仿真和实际数据结果均支持所提出的方法。

著录项

  • 来源
    《Computational management science》 |2019年第3期|375-400|共26页
  • 作者单位

    Department of Management, Economics and Quantitative Methods, University of Bergamo, Via dei Caniana, 2, 24127 Bergamo, BG, Italy,Department of Finance, Faculty of Economics, VSB-TU Ostrava, Sokolska 33, 701 21 Ostrava 1, Ostrava, Czech Republic;

    Department of Management, Economics and Quantitative Methods, University of Bergamo, Via dei Caniana, 2, 24127 Bergamo, BG, Italy;

    Department of Economics and Management, University of Trento, via Inama 5,38122 Trento, Italy,Department of Finance and Accounting, EBS Universitaet fuer Wirtschaft und Recht, Gustav-Stresemann-Ring 3, 65189 Wiesbaden, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Minimum variance; Precision matrix; Graphical lasso; Tlasso;

    机译:最小方差;精确矩阵;图形套索;Tlasso.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号