首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >One-Sided Tests in Linear Models with Multivariate t-Distribution
【24h】

One-Sided Tests in Linear Models with Multivariate t-Distribution

机译:具有多元t分布的线性模型中的单面检验

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we examine the problem of testing equality and inequality constraints on the regression coefficients in linear models with multivariate t--distribution for the within-subject errors. Iterative processes for evaluating the parameters under equality and inequality constraints are presented for fixed degrees of freedom. Under certain regularity assumptions the likelihood ratio, score (Rao) and Wald tests are asymptotically distributed as a mixture of chi-squared distributions, where the weights do not depend on the null parameters, but may depend on the correlations. Thus, one has to search through the set of correlation coefficients for least favorable points. Some particular cases are discussed and the empirical performances of the statistical tests for small and moderate sample sizes are compared via Monte Carlo studies. Comparisons between the theoretical and empirical distributions of the statistical one-sided tests are also made. The quality of the approximation seems to be good even for small (about n = 20) sample sizes. We present an illustrative example with real data in which statistical tests based on normal and t models are compared, confirming the robustness of the t models against outliers. This robustness is reflected directly on the decision from the onesided tests.
机译:在本文中,我们研究了在测试对象内部误差具有多元t分布的线性模型中测试回归系数是否相等和不等式约束的问题。针对固定的自由度,提出了在相等和不平等约束下评估参数的迭代过程。在某些规律性假设下,似然比,得分(Rao)和Wald检验作为卡方分布的混合物渐近分布,其中权重不取决于无效参数,而可能取决于相关性。因此,必须在一组相关系数中搜索最不利的点。讨论了一些特殊情况,并通过蒙特卡洛研究比较了中小样本量统计测试的经验性能。统计单边检验的理论和经验分布也进行了比较。即使对于较小的样本量(约n = 20),近似值的质量似乎也不错。我们用真实数据提供了一个说明性示例,在该示例中,比较了基于正常模型和t模型的统计检验,从而证实了t模型对异常值的鲁棒性。这种健壮性直接反映在单边测试的决策上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号