首页> 外文期刊>Circuits, systems and signal processing >Application of Improved BP Neural Network in Information Fusion Kalman Filter
【24h】

Application of Improved BP Neural Network in Information Fusion Kalman Filter

机译:改进的BP神经网络在信息融合Kalman滤波器中的应用

获取原文
获取原文并翻译 | 示例

摘要

Based on improved back propagation (BP) neural network, information fusion state estimation problem for multi-sensor system is considered. Firstly, particle swarm optimization, search dynamic learning rate and additional momentum method are introduced to train the initial weights and thresholds of BP neural network. Then, the improved neural network is used to optimize the estimated value of Kalman filter. Finally, the sate estimators are fused by weighting matrices. A simulation example verifies the effectiveness of the proposed algorithm.
机译:基于改进的回波传播(BP)神经网络,考虑了多传感器系统的信息融合状态估计问题。首先,引入粒子群优化,搜索动态学习率和额外的动量方法来训练BP神经网络的初始权重和阈值。然后,改进的神经网络用于优化卡尔曼滤波器的估计值。最后,SATE估计器由加权矩阵融合。仿真示例验证所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号