首页> 外文OA文献 >A novel multi-sensors fusion framework based on Kalman Filter and neural network for AFS application
【2h】

A novel multi-sensors fusion framework based on Kalman Filter and neural network for AFS application

机译:基于卡尔曼滤波和神经网络的多传感器融合框架在AFS中的应用

摘要

An adaptive front light system (AFS) is put forward by the Society of Automotive Engineers and Economic Commission for Europe as a means of enhancing vehicular lighting. Traditionally, AFS can be divided into three parts: (1) a leveling subsystem to make lighting parallel to the road surface; (2) a swiveling subsystem to change light distribution along with the angle of the steering wheel; (3) a dimming subsystem to reduce or intensify the lighting. In this paper, a new hybrid multi-sensor fusion framework combining Kalman Filter with neural network is proposed to adjust two stepper motors controlling the vehicles headlights pitch and yaw. Kalman Filter as the frontend is used to deal with redundant sensor signals that are collected from sensors in the different places. Fuzzy Neutral Network as the backend is used to generate adjustment of leveling and swiveling angle through the integration of different type signals. An adaptive parameter adjustment is accomplished by the proposed fusion framework with the varying filter coefficients. The simulation and experiment of leveling angle are conducted using the predefined experimental data. The evaluation results of leveling angle prove that the proposed algorithm can effectively filter out high-frequency perturbations and provide reliable outputs for stepper motor. The same results can be obtained for a swiveling subsystem. Consequently, the hybrid fusion framework is a feasible approach for AFS design to accomplish data processing and nonlinear mapping.
机译:欧洲汽车工程师协会和欧洲经济委员会提出了一种自适应前灯系统(AFS),作为增强车辆照明的一种手段。传统上,AFS可以分为三个部分:(1)找平子系统,使照明平行于路面; (2)旋转子系统,可随着方向盘的角度改变光线分布; (3)调光子系统以减少或增强照明。本文提出了一种结合卡尔曼滤波器和神经网络的新型混合多传感器融合框架,以调节两个步进电机来控制车辆的前大灯的俯仰和偏航。卡尔曼滤波器作为前端用于处理从不同位置的传感器收集的冗余传感器信号。模糊神经网络作为后端,用于通过集成不同类型的信号来生成水平和旋转角度的调整。通过所提出的融合框架具有变化的滤波器系数来实现自适应参数调整。使用预定的实验数据进行水平度角的仿真和实验。水准角的评估结果表明,该算法能够有效滤除高频干扰,为步进电机提供可靠的输出。对于旋转子系统可以获得相同的结果。因此,混合融合框架是AFS设计完成数据处理和非线性映射的可行方法。

著录项

  • 作者

    Liu JF; Cheng KWE; Zeng J;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号