首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Multi-Sensor Fusion for Underwater Vehicle Localization by Augmentation of RBF Neural Network and Error-State Kalman Filter
【2h】

Multi-Sensor Fusion for Underwater Vehicle Localization by Augmentation of RBF Neural Network and Error-State Kalman Filter

机译:RBF神经网络增强的水下车辆定位多传感器融合及误差状态卡尔曼滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Kalman filter variants extended Kalman filter (EKF) and error-state Kalman filter (ESKF) are widely used in underwater multi-sensor fusion applications for localization and navigation. Since these filters are designed by employing first-order Taylor series approximation in the error covariance matrix, they result in a decrease in estimation accuracy under high nonlinearity. In order to address this problem, we proposed a novel multi-sensor fusion algorithm for underwater vehicle localization that improves state estimation by augmentation of the radial basis function (RBF) neural network with ESKF. In the proposed algorithm, the RBF neural network is utilized to compensate the lack of ESKF performance by improving the innovation error term. The weights and centers of the RBF neural network are designed by minimizing the estimation mean square error (MSE) using the steepest descent optimization approach. To test the performance, the proposed RBF-augmented ESKF multi-sensor fusion was compared with the conventional ESKF under three different realistic scenarios using Monte Carlo simulations. We found that our proposed method provides better navigation and localization results despite high nonlinearity, modeling uncertainty, and external disturbances.
机译:Kalman滤波器变体扩展卡尔曼滤波器(EKF)和错误状态卡尔曼滤波器(ESKF)广泛用于水下多传感器融合应用,用于本地化和导航。由于这些过滤器通过在误差协方差矩阵中采用首级泰勒级近似来设计,因此它们在高非线性下导致估计精度降低。为了解决这个问题,我们提出了一种用于水下车辆定位的新型多传感器融合算法,其通过使用ESKF增加径向基函数(RBF)神经网络的状态估计。在所提出的算法中,利用RBF神经网络来通过改进创新误差项来补偿缺乏ESKF性能。 RBF神经网络的权重和中心是通过最大限度地使用最陡的下降优化方法来最小化估计均方误差(MSE)来设计。为了测试性能,使用Monte Carlo仿真将所提出的RBF-Audmented ESKF多传感器融合与传统的ESKF进行比较。我们发现,尽管高度的非线性,建模不确定度和外部干扰,但我们的提出方法提供了更好的导航和本地化结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号