首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Deep Self-Supervised Representation Learning for Free-Hand Sketch
【24h】

Deep Self-Supervised Representation Learning for Free-Hand Sketch

机译:自由素描的深度自我监督的代表学习

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we tackle for the first time, the problem of self-supervised representation learning for free-hand sketches. This importantly addresses a common problem faced by the sketch community - that annotated supervisory data are difficult to obtain. This problem is very challenging in which sketches are highly abstract and subject to different drawing styles, making existing solutions tailored for photos unsuitable. Key for the success of our self-supervised learning paradigm lies with our sketch-specific designs: (i) we propose a set of pretext tasks specifically designed for sketches that mimic different drawing styles, and (ii) we further exploit the use of the textual convolution network (TCN) together with the convolutional neural network (CNN) in a dual-branch architecture for sketch feature learning, as means to accommodate the sequential stroke nature of sketches. We demonstrate the superiority of our sketch-specific designs through two sketch-related applications (retrieval and recognition) on a million-scale sketch dataset, and show that the proposed approach outperforms the state-of-the-art unsupervised representation learning methods, and significantly narrows the performance gap between with supervised representation learning. (1) (1) PyTorch code of this work is available at https://github.com/zzz1515151/self-supervised_learning_sketch.
机译:在本文中,我们首次解决,自我监督代表的罚球草图的问题。这重要地解决了草图社区面临的常见问题 - 难以获得注释的监督数据。这个问题非常具有挑战性,其中草图是高度抽象的,而且受不同的绘图样式,使得为照片不适合定制的现有解决方案。我们的自我监督学习范式成功的关键是我们的素描特定设计:(i)我们提出了一套专门为模仿不同绘图样式的草图设计的借口任务,以及(ii)我们进一步利用使用文本卷积网络(TCN)与卷积神经网络(CNN)在双分支架构中进行素描特征学习,作为容纳草图的连续行程本质的手段。我们通过在一百万级草图数据集上展示了我们的草图特异性设计的优越性,并表明所提出的方法优于最先进的无监督的表示学习方法,以及大大缩小了监督代表学习之间的性能差距。 (1)(1)此工作的Pytorch码在https://github.com/zzzz15151/self-supervised_learning_sketch上提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号