首页> 外文期刊>Building and Environment >Source localization in dynamic indoor environments with natural ventilation: An experimental study of a particle swarm optimization-based multi-robot olfaction method
【24h】

Source localization in dynamic indoor environments with natural ventilation: An experimental study of a particle swarm optimization-based multi-robot olfaction method

机译:具有自然通风的动态室内环境中的源定位:基于粒子群优化的多机器嗅觉方法的实验研究

获取原文
获取原文并翻译 | 示例

摘要

Source localization is important for ensuring indoor air quality and indoor environmental safety. Most available studies on source localization have been conducted in steady indoor environments with mechanical ventilation, and only a very few studies have addressed the more challenging source localization problem in indoor environments with natural ventilation. To locate contaminant sources in indoor environments with natural ventilation, this study presents a multi-robot olfaction method (URPSO) based on an adapted particle swarm optimization (PSO) algorithm by adding an upwind term and a random disturbance term into the standard PSO algorithm. The effectiveness of the presented method was first validated by three robots in a natural ventilation environment created by opening a window. For two typical source locations in the downwind zone and the recirculation zone, 13 and 15 experiments out of 15 experiments were successful, with success rates of 86.7% and 100% and average steps for source localization of 28.7 and 18.4 steps, respectively. The URPSO method was further compared with the PSO and wind utilization II (WUII) methods for locating the source in an imitated natural wind environment produced by using a fan. For the URPSO, PSO and WUII methods, 14, 3 and 5 experiments out of 15 experiments were successful, with success rates of 93.3%, 20% and 33.3% and average steps of 34.1, 34.0 and 35.8 steps, respectively. The experimental results show that the presented method has a similar source localization efficiency but a much higher success rate than the compared methods.
机译:源本地化对于确保室内空气质量和室内环境安全非常重要。关于源定位的最易用的研究已经在具有机械通气的稳定室内环境中进行,并且只有很少的研究在室内环境中解决了自然通风的更具挑战性的源定位问题。为了在具有自然通气的室内环境中定位污染源,本研究通过将UPWIND术语和随机干扰术语添加到标准PSO算法中,提出了一种基于适应的粒子群优化(PSO)算法的多机器人嗅觉方法(URPSO)。通过打开窗口创建的自然通风环境中的三个机器人首次验证了所提出的方法的有效性。对于下行区和再循环区的两个典型源位置,15个实验中的13和15实验成功,成功率为86.7%和100%,分别为28.7和18.4步的源定位的平均步骤。与PSO和风力利用II(WUII)方法相比,将源的方法进行比较,用于定位通过使用风扇生产的模仿的天然风环境中的源。对于URPSO,PSO和WUII方法,15种实验中的14,3和5实验成功,成功率为93.3%,20%和33.3%,平均步长分别为34.1,34.0和35.8步。实验结果表明,呈现的方法具有类似的源定位效率,但比比较方法具有更高的成功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号