首页> 外文期刊>Automation Science and Engineering, IEEE Transactions on >Real-Time Adaptive Control of a Flexible Manipulator Using Reinforcement Learning
【24h】

Real-Time Adaptive Control of a Flexible Manipulator Using Reinforcement Learning

机译:使用强化学习的柔性机械臂实时自适应控制

获取原文
获取原文并翻译 | 示例

摘要

This paper exploits reinforcement learning (RL) for developing real-time adaptive control of tip trajectory and deflection of a two-link flexible manipulator handling variable payloads. This proposed adaptive controller consists of a proportional derivative (PD) tracking loop and an actor-critic-based RL loop that adapts the actor and critic weights in response to payload variations while suppressing the tip deflection and tracking the desired trajectory. The actor-critic-based RL loop uses a recursive least square (RLS)-based temporal difference (TD) learning with eligibility trace and an adaptive memory to estimate the critic weights and a gradient-based estimator for estimating actor weights. Tip trajectory tracking and suppression of tip deflection performances of the proposed RL-based adaptive controller (RLAC) are compared with that of a nonlinear regression-based direct adaptive controller (DAC) and a fuzzy learning-based adaptive controller (FLAC). Simulation and experimental results envisage that the RLAC outperforms both the DAC and FLAC.
机译:本文利用强化学习(RL)来开发尖端轨迹的实时自适应控制和处理可变有效载荷的两连杆柔性机械臂的挠度。提出的自适应控制器由比例微分(PD)跟踪环路和基于行为者评论的RL环路组成,该RL环路响应负载载荷的变化来调整行为者和批评者的权重,同时抑制尖端偏转并跟踪所需的轨迹。基于演员批评者的RL循环使用基于递归最小二乘(RLS)的时间差(TD)学习和合格性跟踪,以及自适应存储器来估计评论者权重,并使用基于梯度的估计器来估计演员权重。将所提出的基于RL的自适应控制器(RLAC)的尖端轨迹跟踪和抑制的尖端偏转性能与基于非线性回归的直接自适应控制器(DAC)和基于模糊学习的自适应控制器(FLAC)进行了比较。仿真和实验结果表明,RLAC的性能优于DAC和FLAC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号