首页> 外文期刊>IEEE Transactions on Automatic Control >Initial Excitation-Based Iterative Algorithm for Approximate Optimal Control of Completely Unknown LTI Systems
【24h】

Initial Excitation-Based Iterative Algorithm for Approximate Optimal Control of Completely Unknown LTI Systems

机译:基于初始激励的迭代算法,用于完全未知LTI系统的近似最优控制

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an approximate/adaptive optimal control (AOC) design for completely unknown continuous-time linear time invariant systems, without requiring the restrictive persistence of excitation (PE) condition for parameter convergence. The proposed AOC algorithm utilizes two layers of filtering-the first layer filters strategically eliminate the need for state derivative information, while the second layer filters provide suitable algebraic relations for iteratively obtaining the optimal policy under a milder online-verifiable initial excitation assumption. Unlike previous AOC algorithms, the proposed method does not require finite window integrals, intelligent data-storage, and the restrictive PE assumption. Further, the proposed method relaxes the sufficient condition required for obtaining successive stabilizing control policies. The intermediate policies are proved to be stabilizing and converging to the optimal policy. Simulation results validate the efficacy of the proposed adaptive/approximate linear quadratic regulator algorithm.
机译:本文提出了一种近似/自适应最佳控制(AOC)设计,用于完全未知的连续时间线性时间不变系统,而不需要对参数收敛的激励(PE)条件的限制性持久性。所提出的AOC算法利用两层滤波 - 第一层滤波器策略性地消除对状态衍生信息的需要,而第二层滤波器提供合适的代数关系,以便在在线可验证的初始激励假设下迭代地获得最佳政策。与以前的AOC算法不同,所提出的方法不需要有限窗口积分,智能数据存储和限制性PE假设。此外,所提出的方法放宽获得连续稳定控制策略所需的足够条件。证明中级政策稳定和融合到最佳政策。仿真结果验证了所提出的自适应/近似线性二次调节器算法的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号