首页> 外文期刊>Control Systems Technology, IEEE Transactions on >A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems
【24h】

A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems

机译:LTI系统的数据驱动约束范数最优迭代学习控制框架

获取原文
获取原文并翻译 | 示例

摘要

This brief presents a data-driven constrained norm-optimal iterative learning control framework for linear time-invariant systems that applies to both tracking and point-to-point motion problems. The key contribution of this brief is the estimation of the system's impulse response using input/output measurements from previous iterations, hereby eliminating time-consuming identification experiments. The estimated impulse response is used in a norm-optimal iterative learning controller, where actuator limitations can be formulated as linear inequality constraints. Experimental validation on a linear motor positioning system shows the ability of the proposed data-driven framework to: 1) achieve tracking accuracy up to the repeatability of the test setup; 2) minimize the rms value of the tracking error while respecting the actuator input constraints; 3) learn energy-optimal system inputs for point-to-point motions.
机译:本简介为线性时不变系统提出了一种数据驱动的约束范数最优迭代学习控制框架,该框架既适用于跟踪问题,又适用于点对点运动问题。本简报的主要贡献是使用来自先前迭代的输入/输出测量来估计系统的脉冲响应,从而消除了耗时的识别实验。估计的脉冲响应用于范数最优的迭代学习控制器中,其中执行器限制可公式化为线性不等式约束。在线性电动机定位系统上的实验验证表明,提出的数据驱动框架具有以下能力:1)达到跟踪精度,直至测试设置的可重复性; 2)在遵守执行器输入约束的同时,使跟踪误差的均方根值最小化; 3)学习能量最佳系统输入以进行点对点运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号