首页> 外文期刊>IEEE transactions on audio, speech and language processing >Concept-based speech-to-speech translation using maximum entropy models for statistical natural concept generation
【24h】

Concept-based speech-to-speech translation using maximum entropy models for statistical natural concept generation

机译:使用最大熵模型的基于概念的语音到语音翻译,用于统计自然概念生成

获取原文
获取原文并翻译 | 示例

摘要

The IBM Multilingual Automatic Speech-To-Speech TranslatOR (MASTOR) system is a research prototype developed for the Defense Advanced Research Projects Agency (DARPA) Babylon/CAST speech-to-speech machine translation program. The system consists of cascaded components of large-vocabulary conversational spontaneous speech recognition, statistical machine translation, and concatenative text-to-speech synthesis. To achieve highly accurate and robust conversational spoken language translation, a unique concept-based speech-to-speech translation approach is proposed that performs the translation by first understanding the meaning of the automatically recognized text. A decision-tree based statistical natural language understanding algorithm extracts the semantic information from the input sentences, while a natural language generation (NLG) algorithm predicts the translated text via maximum-entropy-based statistical models. One critical component in our statistical NLG approach is natural concept generation (NCG). The goal of NCG is not only to generate the correct set of concepts in the target language, but also to produce them in an appropriate order. To improve maximum-entropy-based concept generation, a set of new approaches is proposed. One approach improves concept sequence generation in the target language via forward-backward modeling, which selects the hypothesis with the highest combined conditional probability based on both the forward and backward generation models. This paradigm allows the exploration of both the left and right context information in the source and target languages during concept generation. Another approach selects bilingual features that enable maximum-entropy-based model training on the preannotated parallel corpora. This feature is augmented with word-level information in order to achieve higher NCG accuracy while minimizing the total number of distinct concepts and, hence, greatly reducing the concept annotation and natural language understanding effort. These features are further expanded to multiple sets to enhance model robustness. Finally, a confidence threshold is introduced to alleviate data sparseness problems in our training corpora. Experiments show a dramatic concept generation error rate reduction of more than 40% in o- ur speech translation corpus within limited domains. Significant improvements of both word error rate and BiLingual Evaluation Understudy (BLEU) score are also achieved in our experiments on speech-to-speech translation.
机译:IBM多语言自动语音翻译(MASTOR)系统是为国防高级研究计划局(DARPA)巴比伦/ CAST语音翻译机器翻译程序开发的研究原型。该系统由大词汇会话自发语音识别,统计机器翻译和级联文本到语音合成的级联组件组成。为了实现高度准确和健壮的会话口语翻译,提出了一种基于概念的独特语音到语音翻译方法,该方法通过首先了解自动识别的文本的含义来执行翻译。基于决策树的统计自然语言理解算法从输入语句中提取语义信息,而自然语言生成(NLG)算法则通过基于最大熵的统计模型预测翻译后的文本。我们的统计NLG方法中的关键要素之一是自然概念生成(NCG)。 NCG的目标不仅是用目标语言生成正确的概念集,而且还要以适当的顺序生成它们。为了改善基于最大熵的概念生成,提出了一组新方法。一种方法是通过前向后向建模改进目标语言中概念序列的生成,该模型基于前向和后向生成模型选择组合条件概率最高的假设。这种范例允许在概念生成过程中探索源语言和目标语言中的左右上下文信息。另一种方法选择了双语功能,这些功能可以在预注释的并行语料库上进行基于最大熵的模型训练。单词级信息增强了此功能,以实现更高的NCG精度,同时最大程度地减少了不同概念的总数,因此,大大减少了概念注释和自然语言理解的工作量。这些功能进一步扩展到多个集合,以增强模型的鲁棒性。最后,引入置信度阈值来减轻我们训练语料库中的数据稀疏性问题。实验表明,在有限范围内,我们的语音翻译语料库中的概念生成错误率降低了40%以上。在我们的语音到语音翻译实验中,单词错误率和双语评估学习(BLEU)得分也得到了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号