首页> 外文期刊>Assembly Automation >A novel path planning method for biomimetic robot based on deep learning
【24h】

A novel path planning method for biomimetic robot based on deep learning

机译:基于深度学习的仿生机器人路径规划新方法

获取原文
获取原文并翻译 | 示例

摘要

Purpose - This paper aims to design a multi-layer convolutional neural network (CNN) to solve biomimetic robot path planning problem. Design/methodology/approach - At first, the convolution kernel with different scales can be obtained by using the sparse auto encoder training algorithm; the parameter of the hidden layer is a series of convolutional kernel, and the authors use these kernels to extract first-layer features. Then, the authors get the second-layer features through the max-pooling operators, which improve the invariance of the features. Finally, the authors use fully connected layers of neural networks to accomplish the path planning task. Findings - The NAO biomimetic robot respond quickly and correctly to the dynamic environment. The simulation experiments show that the deep neural network outperforms in dynamic and static environment than the conventional method. Originality/value - A new method of deep learning based biomimetic robot path planning is proposed. The authors designed a multi-layer CNN which includes max-pooling layer and convolutional kernel. Then, the first and second layers features can be extracted by these kernels. Finally, the authors use the sparse auto encoder training algorithm to train the CNN so as to accomplish the path planning task of NAO robot.
机译:目的-本文旨在设计一个多层卷积神经网络(CNN),以解决仿生机器人路径规划问题。设计/方法/方法-首先,可以使用稀疏自动编码器训练算法来获得不同尺度的卷积核。隐藏层的参数是一系列卷积核,作者使用这些核来提取第一层特征。然后,作者通过最大池运算符获得第二层特征,从而改善了特征的不变性。最后,作者使用神经网络的完全连接层来完成路径规划任务。调查结果-NAO仿生机器人对动态环境做出快速正确的响应。仿真实验表明,在动态和静态环境下,深层神经网络的性能均优于传统方法。创意/价值-提出了一种基于深度学习的仿生机器人路径规划的新方法。作者设计了一个多层CNN,其中包括最大池化层和卷积内核。然后,可以通过这些内核提取第一和第二层特征。最后,作者使用稀疏的自动编码器训练算法对CNN进行训练,以完成NAO机器人的路径规划任务。

著录项

  • 来源
    《Assembly Automation》 |2016年第2期|186-191|共6页
  • 作者单位

    College of Information Technology, Heilongjiang Bayi Agricultural University, Daqing, China;

    College of Information Technology, Heilongjiang Bayi Agricultural University, Daqing, China;

    Department of Mathematics, Yangzhou University, Yangzhou, China;

    College of Information Technology, Heilongjiang Bayi Agricultural University, Daqing, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Path planning; Biomimetic robot; Convolutional neural networks; Deep learning;

    机译:路径规划;仿生机器人卷积神经网络深度学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号