首页> 外文期刊>Artificial life and robotics >Neural network approach to acquiring free-gait motion of quadruped robots in obstacle avoidance
【24h】

Neural network approach to acquiring free-gait motion of quadruped robots in obstacle avoidance

机译:避障中四足机器人自由步态运动的神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

In obstacle avoidance by a legged mobile robot, it is not necessary to avoid all of the obstacles by turning only, because it can climb or stride over some of them, depending on the obstacle configuration and the state of the robot, unlike a wheel-type or a crawler-type robot. It is thought that mobility efficiency to a destination is improved by crawling over or striding over obstacles. Moreover, if robots have many legs, like 4-legged or 6-legged types, then the robot's movement range is affected by the order of the swing leg. In this article a neural network (NN) is used to determine the action of a quadruped robot in an obstacle-avoiding situation by using information about the destination, the obstacle configuration, and the robot's self-state. To acquire a free gait in static walking, the order of the swing leg is realized using an alternative NN whose inputs are the amount of movement and the robot's self-state. The design parameters of the former NN are adjusted by a genetic algorithm (GA) off-line.
机译:在有腿的移动机器人避开障碍物时,不必仅通过转弯来避开所有障碍物,因为它可以爬升或跨越某些障碍物,具体取决于障碍物的配置和机器人的状态,这与滚轮不同。式或履带式机器人。据认为,通过越过或越过障碍物可以提高到达目的地的移动效率。此外,如果机器人有很多腿,例如4腿或6腿类型,则机器人的运动范围受摆腿顺序的影响。在本文中,神经网络(NN)用于通过使用有关目的地,障碍物配置和机器人自身状态的信息来确定四足机器人在避障情况下的动作。为了在静态步行中获得自由的步态,使用替代NN来实现摆腿的顺序,该替代NN的输入是运动量和机器人的自我状态。前一个NN的设计参数通过离线遗传算法(GA)进行调整。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号