首页> 外文期刊>Artificial intelligence >Algorithms for computing strategies in two-player simultaneous move games
【24h】

Algorithms for computing strategies in two-player simultaneous move games

机译:两人同时移动游戏中的计算策略算法

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous move games model discrete, multistage interactions where at each stage players simultaneously choose their actions. At each stage, a player does not know what action the other player will take, but otherwise knows the full state of the game. This formalism has been used to express games in general game playing and can also model many discrete approximations of real-world scenarios. In this paper, we describe both novel and existing algorithms that compute strategies for the class of two-player zero-sum simultaneous move games. The algorithms include exact backward induction methods with efficient pruning, as well as Monte Carlo sampling algorithms. We evaluate the algorithms in two different settings: the offline case, where computational resources are abundant and closely approximating the optimal strategy is a priority, and the online search case, where computational resources are limited and acting quickly is necessary. We perform a thorough experimental evaluation on six substantially different games for both settings. For the exact algorithms, the results show that our pruning techniques for backward induction dramatically improve the computation time required by the previous exact algorithms. For the sampling algorithms, the results provide unique insights into their performance and identify favorable settings and domains for different sampling algorithms.
机译:同时移动游戏对离散的,多阶段的交互进行建模,在每个阶段,玩家可以同时选择他们的动作。在每个阶段,一个玩家都不知道其他玩家会采取什么行动,但其他人则知道游戏的完整状态。这种形式主义已被用来表达一般游戏中的游戏,并且还可以对现实世界场景的许多离散近似进行建模。在本文中,我们描述了新颖的算法和现有的算法,它们可以计算两人零和同时移动游戏的策略。这些算法包括具有有效修剪功能的精确后向归纳方法,以及蒙特卡洛采样算法。我们在两种不同的设置中评估算法:离线情况下,计算资源丰富并且最接近最佳策略是当务之急;在线搜索情况下,计算资源有限并且需要快速行动。对于这两种设置,我们对六个基本不同的游戏进行了全面的实验评估。对于精确算法,结果表明我们用于向后归纳的修剪技术极大地缩短了以前精确算法所需的计算时间。对于采样算法,结果为它们的性能提供了独特的见解,并为不同的采样算法确定了有利的设置和领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号