首页> 外文期刊>Approximation Theory and Its Applications >MARKOV-BERNSTEIN TYPE INEQUALITIES OF MULTIVARIATE POLYNOMIALS WITH POSITIVE COEFFICIENTS AND APPLICATIONS
【24h】

MARKOV-BERNSTEIN TYPE INEQUALITIES OF MULTIVARIATE POLYNOMIALS WITH POSITIVE COEFFICIENTS AND APPLICATIONS

机译:具有正系数的多元多项式的马尔可夫-伯恩斯坦型不等式及应用

获取原文
获取原文并翻译 | 示例

摘要

The Cauchy's formula of entire functions f: C~k→C is used to establish Markov-Bernstein type inequalities of multivariate polynomials with positive coefficients on the k-dimensional simplex T_k is contained in R~k and on the cube [0, 1]~k. The main results generalize and improve those of G. G. Lorentz, etc. Some applications: of these inequalities are also considered in polynomial constrained approximation.
机译:整个函数f:C〜k→C的柯西公式用于建立多元多项式的Markov-Bernstein型不等式,其中R〜k和立方体[0,1]包含k维单形T_k为正系数。 〜k。主要结果对G. G. Lorentz等的结果进行了概括和改进。一些应用:在多项式约束逼近中还考虑了这些不等式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号