首页> 外文期刊>Applied Surface Science >Evolution of the mechanical properties of Ti-based intermetallic thin films doped with different metals to be used as biomedical devices
【24h】

Evolution of the mechanical properties of Ti-based intermetallic thin films doped with different metals to be used as biomedical devices

机译:掺入不同金属的钛基金属间化合物机械性能的演变,将其用作生物医学装置

获取原文
获取原文并翻译 | 示例
       

摘要

This study reports the assessment of the mechanical properties of intermetallic titanium thin films, doped with different amounts of aluminium, copper, silver, and gold, aiming their use as biopotential electrodes for non-invasive physiological monitoring. The four binary thin film systems, Ti-Me (Me = Al, Cu, Ag, Au), were prepared by DC magnetron sputtering, placing different number of Me pellets on a pure Ti target. The use of a Ti-composed target gave rise to a wide range of compositions, resulting in three distinctive zones of (micro) structural features, identified in all the prepared systems. In the first zone, a Ti-rich one, the films behaved like solid solutions, developing Ti-like microstructures. As the Me/Ti atomic ratio increased, the formation of intermetallic phases played the leading role and it became possible to observe two different microstructural trends, clearly related to the Me type. This zone was identified as an intermetallic region. In the third zone, a Me-rich one, the microstructures displayed by the different films (Me/Ti > 1.0) showed to be dependent on the Ti solubility into Me. The assessment of the mechanical properties revealed an improved hardness and stiffness with the Me addition, directly related to the formation of intermetallic compounds in different degrees of crystallinity. Moreover, the adhesive strength between the substrate and the coating was higher for the films deposited in the intermetallic zone, more evident in the films prepared with Au, Cu and Ag, in this order. The hardness enhancement was especially evident for the thin films presenting microstructures typical of thin film metallic glasses (TFMGs), Ti-Au and Ti-Cu, about twice the values exhibited by the Ti-Al and Ti-Ag ones. Furthermore, the toughness of these metallic glass-like thin film systems was remarkable, more evident within the Ti-rich zone, presenting H/E ratios close to 0.1 and good elastic recoveries. In contrast, the typical columnar morphologies, combined with the brittle intermetallic structures of the Ti-Ag and Ti-Al films, proved to be less resistant to the plastic deformation (H/E < 0.04), despite the improved elasticity presented by the Ag-rich films.
机译:这项研究报告了对金属间钛薄膜的机械性能的评估,该薄膜掺杂了不同数量的铝,铜,银和金,旨在将其用作生物电势电极以进行非侵入性生理监测。通过直流磁控溅射制备四种二元薄膜系统Ti-Me(Me = Al,Cu,Ag,Au),将不同数量的Me粒料放置在纯Ti靶上。钛组成的靶材的使用引起了范围广泛的组成,导致在所有制备的系统中都鉴定出三个具有(微)结构特征的独特区域。在第一个区域,一个富含钛的区域,薄膜的行为像固溶体一样,形成了类似钛的微结构。随着Me / Ti原子比的增加,金属间相的形成起主导作用,并且有可能观察到两种与Me类型明显相关的不同的微观结构趋势。该区域被确定为金属间区域。在第三个区域中,一个富Me的区域,由不同膜(Me / Ti> 1.0)显示的微观结构取决于Ti在Me中的溶解度。对机械性能的评估表明,添加Me可以改善硬度和刚度,与在不同结晶度下形成金属间化合物直接相关。而且,对于沉积在金属间区域中的膜,基底与涂层之间的粘合强度更高,在以Au,Cu和Ag依次制备的膜中更明显。对于具有典型的薄膜金属玻璃(TFMGs),Ti-Au和Ti-Cu的微观结构的薄膜,硬度的提高尤其明显,约为Ti-Al和Ti-Ag的两倍。此外,这些金属玻璃状薄膜系统的韧性非常显着,在富钛区内更为明显,其H / E比接近0.1,并且具有良好的弹性回复率。相反,尽管Ag表现出改善的弹性,但典型的柱状形态与Ti-Ag和Ti-Al膜的脆性金属间结构相结合,对塑性变形的抵抗力较小(H / E <0.04)。丰富的电影。

著录项

  • 来源
    《Applied Surface Science》 |2020年第1期|144617.1-144617.15|共15页
  • 作者

  • 作者单位

    Univ Minho Ctr Fis Campus Gualtar P-4710057 Braga Portugal;

    Transilvania Univ Brasov Dept Mat Sci 29 Eroilor Blvd Brasov 500036 Romania;

    Univ Lisbon Inst Plasmas Fusao Nucl Lab Aceleradores & Tecnol Radiacao IST Estr Nacl N 10 Km 139 7 P-2695066 Bobadela Portugal;

    Univ Lisbon IST Ctr Ciencias & Tecnol Nucl P-2695066 Bobadela Portugal;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thin films; Ti-Me binary intermetallic systems; Thin film metallic glasses; Hardness; Young's modulus; Toughness; Adhesive strength;

    机译:薄膜;Ti-Me二元金属互化物系统;薄膜金属玻璃;硬度;杨氏模量韧性;粘接强度;
  • 入库时间 2022-08-18 05:22:24

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号