首页> 外文期刊>Applied Physics Letters >Functional gate metal-oxide-semiconductor field-effect transistors using tunnel injection/ejection of trap charges enabling self-adjustable threshold voltage for ultra low power operation
【24h】

Functional gate metal-oxide-semiconductor field-effect transistors using tunnel injection/ejection of trap charges enabling self-adjustable threshold voltage for ultra low power operation

机译:功能性栅极金属氧化物半导体场效应晶体管,采用隧道注入/陷阱电荷注入,可实现超低功耗工作的自可调阈值电压

获取原文
获取原文并翻译 | 示例

摘要

Metal-oxide-semiconductor field-effect transistors (MOSFETs) with a functional gate, which enables self-adjustment of threshold voltage (Vlh), were proposed for ultralow power operation and fabricated with conventional complementary metal-oxide-semiconductor (CMOS) technology. In the on-current state of fabricated nMOSFETs, electron ejection from the charge trap layer by direct tunneling makes Vth low and increases on-current further. In the off-current state, electron injection into the charge trap layer makes Vth high and suppresses subthreshold leakage current. Although the characteristic time of electron transfer of the functional gate from on-current state to off-current state is fairly long, the logic mode operating principle has been verified with the experimental device. Reduction of tunnel oxide thickness (T_(ox)) will reduce the time, which will lead to the practical use of the proposed device for CMOS logic application.
机译:具有功能门的金属氧化物半导体场效应晶体管(MOSFET)能够实现阈值电压(Vlh)的自调节,已提出用于超低功耗操作,并使用常规的互补金属氧化物半导体(CMOS)技术制造。在制造的nMOSFET的导通电流状态下,通过直接隧穿从电荷陷阱层射出的电子会使Vth降低,并进一步增加导通电流。在截止电流状态下,电子注入电荷陷阱层使Vth变高,并抑制了亚阈值泄漏电流。尽管功能栅极从导通电流状态到截止电流状态的电子转移的特征时间相当长,但逻辑模式的工作原理已通过实验装置得到验证。减小隧道氧化物厚度(T_(ox))将减少时间,这将导致所提出的器件在CMOS逻辑应用中的实际应用。

著录项

  • 来源
    《Applied Physics Letters》 |2011年第5期|p.053501.1-053501.3|共3页
  • 作者单位

    Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama,Higashihiroshima, 739-8527, Japan;

    Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama,Higashihiroshima, 739-8527, Japan;

    Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama,Higashihiroshima, 739-8527, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号