首页> 外文期刊>Applied numerical mathematics >New model function methods for determining regularization parameters in linear inverse problems
【24h】

New model function methods for determining regularization parameters in linear inverse problems

机译:确定线性逆问题中正则化参数的新模型函数方法

获取原文
获取原文并翻译 | 示例

摘要

When the damped Morozov discrepancy principle is used to determine the Tikhonov regularization parameter, one should theoretically solve a nonlinear equation by some iteration process, which is generally of local convergence with large amount of computations. This paper considers an approximation of the regularization parameter under the model function framework, which solves an approximate Morozov equation with an explicit expression iteratively. For this approximation, three kinds of new model functions are proposed. The corresponding new algorithms for determining the regularization parameters are also established, with the rigorous proof of global convergence under a unified framework. Our work is a generalization and improvement of the earlier model function method [J.L Xie, J. Zou, Inverse Problems 18 (5) (2002) 631-643]. Numerical implementations for some ill-posed problems are presented to illustrate the validity of the proposed algorithms.
机译:当使用阻尼Morozov差异原理确定Tikhonov正则化参数时,理论上应该通过一些迭代过程来求解非线性方程,该过程通常具有大量计算的局部收敛性。本文考虑了模型函数框架下的正则化参数的近似值,它以迭代的方式求解了带有显式表达式的近似Morozov方程。为此,提出了三种新的模型函数。还建立了确定正则化参数的相应新算法,并在统一框架下严格证明了全局收敛性。我们的工作是对早期模型函数方法的推广和改进[J.L Xie,J. Zou,Inverse Problems 18(5)(2002)631-643]。提出了一些不适定问题的数值实现,以说明所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号