首页> 外文期刊>Applied numerical mathematics >Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition
【24h】

Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition

机译:用Dirichlet边界条件求解分数线方程的无单元Galerkin(EFG)方法分析

获取原文
获取原文并翻译 | 示例

摘要

The element free Galerkin technique is a meshless method based on the variational weak form in which the test and trial functions are the shape functions of moving least squares approximation. Since the shape functions of moving least squares approximation do not have the Kronecker property thus the Dirichlet boundary condition can not be applied directly and also in this case obtaining an error estimate is not simple. The main aim of the current paper is to propose an error estimate for the extracted numerical scheme from the element free Galerkin method. To this end, we select the fractional cable equation with Dirichlet boundary condition. Firstly, we obtain a time-discrete scheme based on a finite difference formula with convergence order O(τ~(1+min{α,β})), then we use the meshless element free Galerkin method, to discrete the space direction and obtain a full-discrete scheme. Also, for calculating the appeared integrals over the boundary and the domain of problem the Gauss-Legendre quadrature rule has been used. In the next, we change the main problem with Dirichlet boundary condition to a new problem with Robin boundary condition. Then, we show that the new technique is unconditionally stable and convergent using the energy method. We show convergence orders of the time discrete scheme and the full discrete scheme are O(τ~(1+min{α,β})) and O(r~(p+1) + τ~(1+min{α,β})), respectively. So, we can say that the main aim of this paper is as follows, (1) Transferring the main problem with Dirichlet boundary condition (old problem) to a problem with Robin boundary condition (new problem), (2) Showing that with special condition (when σ → +∞) the solution of the new problem is convergent to the solution of the old problem, (3) Obtaining an error estimate for the new problem. Numerical examples confirm the efficiency and accuracy of the proposed scheme.
机译:无元素Galerkin技术是基于变分弱形式的无网格方法,其中测试和试验函数是移动最小二乘近似的形状函数。由于移动最小二乘近似的形状函数不具有Kronecker属性,因此Dirichlet边界条件不能直接应用,并且在这种情况下,获得误差估计也不简单。本文的主要目的是为从无元素Galerkin方法提取的数值方案提出误差估计。为此,我们选择具有Dirichlet边界条件的分数电缆方程。首先,基于收敛阶数为O(τ〜(1 + min {α,β}))的有限差分公式,获得了一个时离散方案,然后采用无网格无伽辽金方法对空间方向进行离散。获得全离散方案。同样,为了计算问题的边界和域上出现的积分,已使用高斯-勒根德勒正交规则。接下来,我们将Dirichlet边界条件的主要问题更改为Robin边界条件的新问题。然后,我们证明了该新技术使用能量方法是无条件稳定和收敛的。我们显示了时间离散方案的收敛阶,完全离散方案的收敛阶为O(τ〜(1 + min {α,β}))和O(r〜(p + 1)+τ〜(1 + min {α, β}))。因此,可以说本文的主要目的如下:(1)将具有Dirichlet边界条件的主要问题(旧问题)转移到具有Robin边界条件的问题(新问题),(2)条件(当σ→+∞时),新问题的解收敛到旧问题的解,(3)获得新问题的误差估计。数值算例验证了所提方案的有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号