首页> 外文期刊>Computers & mathematics with applications >A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method
【24h】

A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method

机译:通过交替方向隐式(ADI)方法和无插值Galerkin(EFG)方法的新组合来求解分数反应扩散模型的无网格数值程序

获取原文
获取原文并翻译 | 示例

摘要

A new numerical algorithm has been investigated for solving time fractional reaction-subdiffusion equation. The fractional derivative of the considered equation is described in the Riemann-Liouville sense. Firstly, we discrete the temporal dimension of the considered model using a finite difference scheme. A central difference scheme has been applied to discrete the first time derivative and then for discretizing the fractional integral term a difference scheme has been employed with convergence order O(tau(1+gamma)). Moreover, to achieve a full discretization scheme a type of meshless method has been improved that is known as element free Galerkin (EFG) method. The EFG method for integration uses a background mesh. This method is based on the Galerkin weak form in which the test and trial functions are shape functions of moving least squares (MIS) approximation. Since the shape functions of traditional MIS lack the Kronecker delta property, essential boundary conditions of a boundary value problem can not be directly computed and other methods must be employed for this issue. To this end, a new class of MLS shape functions has been applied that is called shape functions of interpolating MIS. The new shape function has the mentioned property. In the EFG method, calculating the appeared two-dimensional integrals is a basic issue. In this research work, the alternating direction implicit approach is combined with the element free Galerkin method. Then, using the new proposed method, the two-dimensional integrals on rectangular domain will be changed to simple one-dimensional integrals. We prove that the new numerical algorithm is unconditionally stable and also we obtain an error bound for the new procedure using the energy method. Numerical examples are reported which demonstrate the theoretical results and the efficiency of proposed scheme. (C) 2015 Elsevier Ltd. All rights reserved.
机译:研究了一种求解时间分数反应-扩散方程的新数值算法。所考虑方程式的分数导数以Riemann-Liouville的意义描述。首先,我们使用有限差分方案离散所考虑模型的时间维度。中心差分方案已应用于离散一阶导数,然后为了离散化分数积分项,已采用了具有收敛阶数O(tau(1 +γ))的差分方案。此外,为了实现完整的离散化方案,已改进了一种无网格方法,称为无元素伽勒金(EFG)方法。用于集成的EFG方法使用背景网格。此方法基于Galerkin弱形式,其中测试和试验函数是移动最小二乘(MIS)逼近的形状函数。由于传统MIS的形状函数缺乏Kronecker增量属性,因此无法直接计算边值问题的基本边界条件,因此必须采用其他方法。为此,已经应用了一类新的MLS形状函数,称为内插MIS的形状函数。新形状函数具有上述属性。在EFG方法中,计算出现的二维积分是一个基本问题。在这项研究工作中,交替方向隐式方法与无单元Galerkin方法相结合。然后,使用新提出的方法,将矩形域上的二维积分更改为简单的一维积分。我们证明了新的数值算法是无条件稳定的,并且使用能量方法还为新过程获得了误差界。数值算例表明了理论结果和所提方案的有效性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号