首页> 外文期刊>Computers & mathematics with applications >Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition
【24h】

Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition

机译:基于再生核粒子法的无元素Galerkin方法求解具有Robin边界条件的二维分数Tricomi型方程

获取原文
获取原文并翻译 | 示例

摘要

The traditional element free Galerkin (EFG) approach is constructed on variational weak form that the test and trial functions are shape functions of moving least squares (MLS) approximation. In the current paper, we propose a new version of the EFG method based on the shape functions of reproducing kernel particle method (RKPM). In other words, based on the developed approach in Han and Meng (2001) the fractional Tricomi-type equation will be solved using the new technique. The fractional derivative has been introduced in the Caputo's sense and is approximated by a finite difference plan of order 0 (tau(3-alpha)), 1 < alpha < 2. We use the EFG-RKPM to discrete the spatial direction. We illustrate some numerical results on non-rectangular domains. The unconditional stability and convergence of the new technique have been proved. Numerical examples display the theoretical results and the efficiency of the proposed approach. Also, the numerical results are compared with the finite element method (FEM) and EFG-MLS procedure. (C) 2016 Elsevier Ltd. All rights reserved.
机译:传统的无元素伽勒金(EFG)方法是基于变分弱形式构建的,其测试和试验函数是移动最小二乘(MLS)近似的形状函数。在当前的论文中,我们基于可再生核粒子方法(RKPM)的形状函数,提出了一种新版本的EFG方法。换句话说,基于Han和Meng(2001)的改进方法,分数Tricomi型方程将使用新技术求解。分数导数是在Caputo的意义上引入的,并由阶数为0(tau(3-alpha))的有限差分计划近似,1

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号