首页> 外文期刊>Applied Mathematical Modelling >Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation
【24h】

Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation

机译:通过基于代理的模拟优化城市轨道交通网络中的客流引导信息发布

获取原文
获取原文并翻译 | 示例

摘要

The passenger flow guidance is an effective demand management strategy to alleviate the excessive congestion in the urban rail transit network. In order to determine the scope and the timing, a simulation-based optimization model is proposed to optimize the release of passenger flow guidance information in the rail transit network in this paper. In the optimization model, we mainly focus on three aspects namely; where, when and what type of the guidance information should be released to the passengers. In the simulation model, the passenger choice behavior is captured by the agent-based simulation method, which responses to the congestion and the guidance information. Based on this, the dynamic passenger flow distribution can be derived. Furthermore, the adoption rate of the displayed guidance information on passenger information system as well as its impact on passenger travel behavior are also considered in the model. A hybrid heuristic solution algorithm, integrated with passenger simulator and genetic algorithm, is developed to solve the proposed simulation-based optimization model. Finally, a case study of Beijing subway is carried out with the large-scale smart card data. The numerical study shows that the passenger flow demand affects the guidance effect significantly and the best guidance effect can be met with sufficiently high passenger flow demand. And the guidance rate is also found to affect the guidance results. The results also show that the proposed model can provide a detailed guidance scheme for every station at selected time intervals. The results show that the dynamic releasing scheme can save up to a total of 46,319 min in passenger travel time during a single guidance period. (C) 2019 Elsevier Inc. All rights reserved.
机译:客流引导是缓解城市轨道交通网络过度拥堵的有效需求管理策略。为了确定范围和时间,本文提出了一种基于仿真的优化模型,以优化轨道交通网络中的客流引导信息的发布。在优化模型中,我们主要集中在三个方面:应在何处,何时何地向乘客发布指导信息。在仿真模型中,通过基于代理的仿真方法来捕获乘客的选择行为,该方法响应拥堵和引导信息。基于此,可以得出动态的客流分布。此外,模型中还考虑了在乘客信息系统上显示的引导信息的采用率及其对乘客出行行为的影响。开发了一种结合乘客模拟器和遗传算法的混合启发式求解算法,以解决所提出的基于仿真的优化模型。最后,利用大规模智能卡数据对北京地铁进行了案例研究。数值研究表明,客流需求对指导效果有显着影响,足够高的客流需求可以达到最佳的指导效果。并且发现指导率也影响指导结果。结果还表明,提出的模型可以在选定的时间间隔为每个站点提供详细的指导方案。结果表明,该动态释放方案在单个引导期间最多可节省46,319分钟的乘客旅行时间。 (C)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2019年第8期|337-355|共19页
  • 作者单位

    Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China|Beijing Jiaotong Univ, Key Lab Transport Ind Big Data Applicat Technol C, Minist Transport, Beijing 100044, Peoples R China;

    Southeast Univ, Sch Transportat, Nanjing 210096, Jiangsu, Peoples R China;

    Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China;

    Beijing Jiaotong Univ, State Key Lab Rail Traff Control & Safety, Beijing 100044, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rail transit network; Passenger flow guidance; Agent-based simulation; Genetic algorithm;

    机译:轨道交通网;客流引导;基于Agent的仿真;遗传算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号