首页> 外文期刊>Applied Mathematical Modelling >Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation
【24h】

Optimizing the release of passenger flow guidance information in urban rail transit network via agent-based simulation

机译:基于代理的仿真优化城市轨道交通网络中的乘客流引导信息的发布

获取原文
获取原文并翻译 | 示例

摘要

The passenger flow guidance is an effective demand management strategy to alleviate the excessive congestion in the urban rail transit network. In order to determine the scope and the timing, a simulation-based optimization model is proposed to optimize the release of passenger flow guidance information in the rail transit network in this paper. In the optimization model, we mainly focus on three aspects namely; where, when and what type of the guidance information should be released to the passengers. In the simulation model, the passenger choice behavior is captured by the agent-based simulation method, which responses to the congestion and the guidance information. Based on this, the dynamic passenger flow distribution can be derived. Furthermore, the adoption rate of the displayed guidance information on passenger information system as well as its impact on passenger travel behavior are also considered in the model. A hybrid heuristic solution algorithm, integrated with passenger simulator and genetic algorithm, is developed to solve the proposed simulation-based optimization model. Finally, a case study of Beijing subway is carried out with the large-scale smart card data. The numerical study shows that the passenger flow demand affects the guidance effect significantly and the best guidance effect can be met with sufficiently high passenger flow demand. And the guidance rate is also found to affect the guidance results. The results also show that the proposed model can provide a detailed guidance scheme for every station at selected time intervals. The results show that the dynamic releasing scheme can save up to a total of 46,319 min in passenger travel time during a single guidance period. (C) 2019 Elsevier Inc. All rights reserved.
机译:客运指导是一种有效的需求管理策略,以减轻城市轨道交通网络中过度拥堵。为了确定范围和定时,提出了一种基于仿真的优化模型,以优化本文的轨道交通网络中的乘客流引导信息的释放。在优化模型中,我们主要关注三个方面;应该向乘客释放指导信息的何处,何时,何时以及何种类型。在仿真模型中,乘客选择行为由基于代理的仿真方法捕获,这对拥塞和指导信息响应。基于此,可以导出动态客流分布。此外,在模型中也考虑了关于乘客信息系统的显示指导信息的采用率以及其对乘客旅行行为的影响。开发了一种与乘客模拟器和遗传算法集成的混合启发式解决方案算法,以解决所提出的基于仿真的优化模型。最后,对北京地铁进行了一个案例研究,具有大规模的智能卡数据。数值研究表明,客流需求显着影响引导效果,可以满足最高乘客需求的最佳引导效果。并发现指导率会影响指导结果。结果还表明,所提出的模型可以以所选时间间隔提供每个站的详细指导方案。结果表明,动态释放方案在单个指导期间,可在乘客行程时间内节省高达46,319分钟。 (c)2019 Elsevier Inc.保留所有权利。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2019年第8期|337-355|共19页
  • 作者单位

    Beijing Jiaotong Univ State Key Lab Rail Traff Control & Safety Beijing 100044 Peoples R China;

    Beijing Jiaotong Univ State Key Lab Rail Traff Control & Safety Beijing 100044 Peoples R China|Beijing Jiaotong Univ Key Lab Transport Ind Big Data Applicat Technol C Minist Transport Beijing 100044 Peoples R China;

    Southeast Univ Sch Transportat Nanjing 210096 Jiangsu Peoples R China;

    Beijing Jiaotong Univ State Key Lab Rail Traff Control & Safety Beijing 100044 Peoples R China;

    Beijing Jiaotong Univ State Key Lab Rail Traff Control & Safety Beijing 100044 Peoples R China;

    Beijing Jiaotong Univ State Key Lab Rail Traff Control & Safety Beijing 100044 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Rail transit network; Passenger flow guidance; Agent-based simulation; Genetic algorithm;

    机译:轨道交通网络;客流指导;基于代理的模拟;遗传算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号