首页> 外文期刊>Advanced engineering informatics >A machine learning approach for characterizing soil contamination in the presence of physical site discontinuities and aggregated samples
【24h】

A machine learning approach for characterizing soil contamination in the presence of physical site discontinuities and aggregated samples

机译:一种在物理位置不连续和聚集样本存在下表征土壤污染的机器学习方法

获取原文
获取原文并翻译 | 示例

摘要

Rehabilitation of contaminated soils in urban areas is in high demand because of the appreciation of land value associated with the increased urbanization. Moreover, there are financial incentives to minimize soil characterization uncertainties. Minimizing uncertainty is achieved by providing models that are better representation of the true site characteristics. In this paper, we propose two new probabilistic formulations compatible with Gaussian Process Regression (GPR) and enabling (1) to model the experimental conditions where contaminant concentration is quantified from aggregated soil samples and (2) to model the effect of physical site discontinuities. The performance of approaches proposed in this paper are compared using a Leave One Out Cross-Validation procedure (LOO-CV). Results indicate that the two new probabilistic formulations proposed outperform the standard Gaussian Process Regression.
机译:由于城市化进程不断加快,土地价值不断上升,因此对城市污染土壤的修复需求很高。而且,有经济上的动机来使土壤特征的不确定性最小化。通过提供可以更好地表示真实站点特征的模型,可以最大程度地减少不确定性。在本文中,我们提出了两种与高斯过程回归(GPR)兼容的新概率公式,并且使(1)能够对从聚集土壤样品中定量污染物浓度的实验条件进行建模,以及(2)对物理场所不连续性的影响进行建模。使用留一法交叉验证程序(LOO-CV)比较了本文提出的方法的性能。结果表明,提出的两个新的概率公式优于标准的高斯过程回归。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号