首页> 外文期刊>ACM transactions on sensor networks >A Sensor System for High-Fidelity Temperature Distribution Forecasting in Data Centers
【24h】

A Sensor System for High-Fidelity Temperature Distribution Forecasting in Data Centers

机译:用于数据中心的高保真温度分布预测的传感器系统

获取原文
获取原文并翻译 | 示例

摘要

Data centers have become a critical computing infrastructure in the era of cloud computing. Temperature monitoring and forecasting are essential for preventing server shutdowns because of overheating and improving a data center's energy efficiency. This article presents a novel cyber-physical approach for temperature forecasting in data centers, one that integrates Computational Fluid Dynamics (CFD) modeling, in situ wireless sensing, and real-time data-driven prediction. To ensure forecasting fidelity, we leverage the realistic physical thermodynamic models of CFD to generate transient temperature distribution and calibrate it using sensor feedback. Both simulated temperature distribution and sensor measurements are then used to train a real-time prediction algorithm. As a result, our approach reduces not only the computational complexity of online temperature modeling and prediction, but also the number of deployed sensors, which enables a portable, noninvasive thermal monitoring solution that does not rely on the infrastructure of a monitored data center. We extensively evaluated the proposed system on a rack of 15 servers and a testbed of five racks and 229 servers in a small-scale production data center. Our results show that our system can predict the temperature evolution of servers with highly dynamic workloads at an average error of 0.52 degrees C, within a duration up to 10 minutes. Moreover, our approach can reduce the required number of sensors by 67% while maintaining desirable prediction fidelity.
机译:数据中心已成为云计算时代的关键计算基础架构。温度监控和预测对于防止服务器因过热而关闭以及提高数据中心的能效至关重要。本文介绍了一种用于数据中心温度预测的新颖的网络物理方法,该方法集成了计算流体动力学(CFD)建模,原位无线传感和实时数据驱动的预测。为了确保预测保真度,我们利用CFD的实际物理热力学模型来生成瞬态温度分布,并使用传感器反馈对其进行校准。然后,将模拟的温度分布和传感器测量值用于训练实时预测算法。结果,我们的方法不仅降低了在线温度建模和预测的计算复杂性,而且降低了部署的传感器的数量,从而实现了一种不依赖于受监控数据中心基础架构的便携式,无创热监控解决方案。我们在一个小型生产数据中心的15个服务器机架和5个机架和229个服务器的测试台上对提议的系统进行了广泛的评估。我们的结果表明,我们的系统可以预测具有高动态负载的服务器的温度变化,平均误差为0.52摄氏度,持续时间最多为10分钟。此外,我们的方法可以将所需的传感器数量减少67%,同时保持理想的预测保真度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号