首页> 外文期刊>ACM transactions on knowledge discovery from data >Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks
【24h】

Citywide Traffic Flow Prediction Based on Multiple Gated Spatio-temporal Convolutional Neural Networks

机译:基于多门控时空卷积神经网络的全市交通流量预测

获取原文
获取原文并翻译 | 示例

摘要

Traffic flow prediction is crucial for public safety and traffic management, and remains a big challenge because of many complicated factors, e.g., multiple spatio-temporal dependencies, holidays, and weather. Some work leveraged 2D convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) to explore spatial relations and temporal relations, respectively, which outperformed the classical approaches. However, it is hard for these work to model spatio-temporal relations jointly. To tackle this, some studies utilized LSTMs to connect high-level layers of CNNs, but left the spatio-temporal correlations not fully exploited in low-level layers. In this work, we propose novel spatio-temporal CNNs to extract spatio-temporal features simultaneously from low-level to high-level layers, and propose a novel gated scheme to control the spatio-temporal features that should be propagated through the hierarchy of layers. Based on these, we propose an end-to-end framework, multiple gated spatio-temporal CNNs (MGSTC), for citywide traffic flow prediction. MGSTC can explore multiple spatio-temporal dependencies through multiple gated spatio-temporal CNN branches, and combine the spatio-temporal features with external factors dynamically. Extensive experiments on two real traffic datasets demonstrates that MGSTC outperforms other state-of-the-art baselines.
机译:交通流量预测对于公共安全和交通管理至关重要,并且由于许多复杂因素,例如多个时空依赖,假期和天气,仍然是一个很大的挑战。一些工作利用2D卷积神经网络(CNNS)和长期内存网络(LSTMS)分别探讨空间关系和时间关系,这优于经典方法。但是,这些工作很难联合模拟时空关系。为了解决这一点,一些研究利用LSTMS连接高级别的CNN层,但留下了不完全利用在低级层中的时空相关性。在这项工作中,我们提出了新的时空CNN,以从低电平到高级层的同时提取时空特征,并提出一种新颖的门控方案,以控制应通过层层次传播的时空特征。基于这些,我们提出了一个端到端的框架,多个门控时空CNN(MGSTC),用于全市的交通流量预测。 MGSTC可以通过多个门控时空CNN分支探索多个时空依赖性,并将时空特征与外部因子动态结合。两个实际交通数据集的广泛实验表明,MGSTC优于其他最先进的基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号