首页> 外文期刊>IEEE transactions on industrial informatics >Traffic Network Flow Prediction Using Parallel Training for Deep Convolutional Neural Networks on Spark Cloud
【24h】

Traffic Network Flow Prediction Using Parallel Training for Deep Convolutional Neural Networks on Spark Cloud

机译:在火花云上使用平行训练的交通网络流预测

获取原文
获取原文并翻译 | 示例

摘要

Traffic flow in a road network is mutually interactive and interdependent with each other. It is challenging to describe the dynamics of traffic network flow by using analytical methods. In this article, the deep convolutional neural network (DCNN) model is employed to address traffic network flow prediction. To improve the parameter learning efficiency confronting traffic big data, a parallel training approach is developed for the DCNN prediction model. The theoretical foundation is developed for the parallel training algorithm of the DCNN model. A master-slave parallel computing solution for traffic network flow prediction is implemented on the Spark cloud. Real data of traffic network flow are applied to verify the effectiveness of the DCNN prediction model and the parallel training algorithm. The experimental results demonstrate that the DCNN prediction model for traffic network flow outperforms the typical prediction models based on backpropagation neural networks, support vector regressions, radial basis functions, and decision tree regressions. The proposed parallel training method can improve the training efficiency and obtain global features of the entire dataset from local learning with regard to the respective data subsets.
机译:道路网络中的交通流量相互交互和相互依存。使用分析方法描述交通网络流量的动态充满挑战。在本文中,使用深度卷积神经网络(DCNN)模型来解决业务网络流程预测。为了提高参数学习效率,面对流量大数据,为DCNN预测模型开发了并行训练方法。为DCNN模型的并行训练算法开发了理论基础。用于交通网络流预测的主从并行计算解决方案在火花云上实现。应用业务网络流的实际数据来验证DCNN预测模型的有效性和并行训练算法。实验结果表明,交通网络流量的DCNN预测模型优于基于反向化神经网络的典型预测模型,支持向量回归,径向基函数和决策树回归。所提出的并行训练方法可以提高培训效率,并从本地学习关于各个数据子集获得整个数据集的全局特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号