首页> 外文期刊>ACM transactions on knowledge discovery from data >Toward Personalized Context Recognition for Mobile Users: A Semisupervised Bayesian HMM Approach
【24h】

Toward Personalized Context Recognition for Mobile Users: A Semisupervised Bayesian HMM Approach

机译:面向移动用户的个性化上下文识别:一种半监督贝叶斯HMM方法

获取原文
获取原文并翻译 | 示例

摘要

The problem of mobile context recognition targets the identification of semantic meaning of context in a mobile environment. This plays an important role in understanding mobile user behaviors and thus provides the opportunity for the development of better intelligent context-aware services. A key step of context recognition is to model the personalized contextual information of mobile users. Although many studies have been devoted to mobile context modeling, limited efforts have been made on the exploitation of the sequential and dependency characteristics of mobile contextual information. Also, the latent semantics behind mobile context are often ambiguous and poorly understood. Indeed, a promising direction is to incorporate some domain knowledge of common contexts, such as "waiting for a bus" or "having dinner," by modeling both labeled and unlabeled context data from mobile users because there are often few labeled contexts available in practice. To this end, in this article, we propose a sequence-based semisupervised approach to modeling personalized context for mobile users. Specifically, we first exploit the Bayesian Hidden Markov Model (B-HMM) for modeling context in the form of probabilistic distributions and transitions of raw context data. Also, we propose a sequential model by extending B-HMM with the prior knowledge of contextual features to model context more accurately. Then, to efficiently learn the parameters and initial values of the proposed models, we develop a novel approach for parameter estimation by integrating the Dirichlet Process Mixture (DPM) model and the Mixture Unigram (MU) model. Furthermore, by incorporating both user-labeled and unlabeled data, we propose a semisupervised learning-based algorithm to identify and model the latent semantics of context. Finally, experimental results on real-world data clearly validate both the efficiency and effectiveness of the proposed approaches for recognizing personalized context of mobile users.
机译:移动上下文识别的问题旨在识别移动环境中上下文的语义。这在理解移动用户的行为中起着重要的作用,因此为开发更好的智能上下文感知服务提供了机会。上下文识别的关键步骤是对移动用户的个性化上下文信息进行建模。尽管许多研究致力于移动上下文建模,但是在利用移动上下文信息的顺序和依存特性方面所做的努力有限。而且,移动上下文背后的潜在语义通常是模棱两可的,并且了解甚少。确实,一个有前途的方向是通过对来自移动用户的带标签的和未带标签的上下文数据进行建模,从而合并一些通用上下文的领域知识,例如“等待公共汽车”或“吃晚饭”,因为实际上实践中很少有带标签的上下文。为此,在本文中,我们提出了一种基于序列的半监督方法来为移动用户建模个性化上下文。具体来说,我们首先利用贝叶斯隐马尔可夫模型(B-HMM)以概率分布和原始上下文数据转换的形式对上下文进行建模。此外,我们通过扩展具有上下文特征的先验知识的B-HMM来提出顺序模型,以更准确地建模上下文。然后,为了有效地学习所提出模型的参数和初始值,我们通过集成Dirichlet过程混合(DPM)模型和混合Unigram(MU)模型,开发了一种新的参数估计方法。此外,通过合并用户标记和未标记的数据,我们提出了一种基于半监督学习的算法,以识别和建模上下文的潜在语义。最后,真实世界数据的实验结果清楚地验证了所提出的识别移动用户个性化上下文的方法的效率和有效性。

著录项

  • 来源
    《ACM transactions on knowledge discovery from data》 |2014年第2期|10.1-10.29|共29页
  • 作者单位

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China;

    Rutgers State Univ, Management Sci & Informat Syst Dept, Newark, NJ 07102 USA;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China;

    Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China;

    Nokia Res Ctr, Beijing 100010, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Context recognition; hidden Markov model;

    机译:上下文识别;隐马尔可夫模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号