首页> 外文期刊>Knowledge and Information Systems >An unsupervised approach to modeling personalized contexts of mobile users
【24h】

An unsupervised approach to modeling personalized contexts of mobile users

机译:对移动用户的个性化上下文建模的无监督方法

获取原文
获取原文并翻译 | 示例

摘要

Mobile context modeling is a process of recognizing and reasoning about contexts and situations in a mobile environment, which is critical for the success of context-aware mobile services. While there are prior works on mobile context modeling, the use of unsupervised learning techniques for mobile context modeling is still under-explored. Indeed, unsupervised techniques have the ability to learn personalized contexts, which are difficult to be predefined. To that end, in this paper, we propose an unsupervised approach to modeling personalized contexts of mobile users. Along this line, we first segment the raw context data sequences of mobile users into context sessions where a context session contains a group of adjacent context records which are mutually similar and usually reflect the similar contexts. Then, we exploit two methods for mining personalized contexts from context sessions. The first method is to cluster context sessions and then to extract the frequent contextual feature-value pairs from context session clusters as contexts. The second method leverages topic models to learn personalized contexts in the form of probabilistic distributions of raw context data from the context sessions. Finally, experimental results on real-world data show that the proposed approach is efficient and effective for mining personalized contexts of mobile users.
机译:移动上下文建模是识别和推理移动环境中的上下文和状况的过程,这对于上下文感知的移动服务的成功至关重要。尽管有关于移动上下文建模的现有工作,但在移动上下文建模中使用无监督学习技术的方法仍未得到充分研究。确实,无人监督技术具有学习个性化上下文的能力,这是很难预定义的。为此,在本文中,我们提出了一种无监督方法来对移动用户的个性化上下文进行建模。沿着这条线,我们首先将移动用户的原始上下文数据序列划分为上下文会话,其中上下文会话包含一组彼此相似且通常反映相似上下文的相邻上下文记录。然后,我们利用两种方法从上下文会话中挖掘个性化上下文。第一种方法是对上下文会话进行聚类,然后从上下文会话聚类中提取频繁的上下文特征值对作为上下文。第二种方法利用主题模型来学习来自上下文会话的原始上下文数据的概率分布形式的个性化上下文。最后,对真实世界数据的实验结果表明,该方法对于挖掘移动用户的个性化上下文是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号