首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Trust-Based Multi-Robot Symbolic Motion Planning with a Human-in-the-Loop
【24h】

Trust-Based Multi-Robot Symbolic Motion Planning with a Human-in-the-Loop

机译:基于信任的基于信任的多机器人符号运动规划

获取原文
获取原文并翻译 | 示例

摘要

Symbolic motion planning for robots is the process of specifying and planning robot tasks in a discrete space, then carrying them out in a continuous space in a manner that preserves the discrete-level task specifications. Despite progress in symbolic motion planning, many challenges remain, including addressing scalability for multi-robot systems and improving solutions by incorporating human intelligence. In this article, distributed symbolic motion planning for multi-robot systems is developed to address scalability. More specifically, compositional reasoning approaches are developed to decompose the global planning problem, and atomic propositions for observation, communication, and control are proposed to address inter-robot collision avoidance. To improve solution quality and adaptability, a hypothetical dynamic, quantitative, and probabilistic human-to-robot trust model is developed to aid this decomposition. Furthermore, a trust-based real-time switching framework is proposed to switch between autonomous and manual motion planning for tradeoffs between task safety and efficiency. Deadlock- and livelock-free algorithms are designed to guarantee reachability of goals with a human-in-the-loop. A set of nontrivial multi-robot simulations with direct human inputs and trust evaluation is provided, demonstrating the successful implementation of the trust-based multi-robot symbolic motion planning methods.
机译:机器人的符号运动计划是在离散空间中指定和计划机器人任务的过程,然后以保留离散级任务规范的方式在连续空间中执行它们。尽管符号运动计划取得了进展,但仍然存在许多挑战,包括解决多机器人系统的可伸缩性以及通过整合人的智能来改进解决方案。在本文中,开发了用于多机器人系统的分布式符号运动计划以解决可伸缩性。更具体地说,开发了组合推理方法来分解全局计划问题,并提出了用于观察,通信和控制的原子命题,以解决机器人之间的碰撞避免问题。为了提高解决方案的质量和适应性,开发了一种假设的动态,定量和概率性人对机器人信任模型来帮助进行这种分解。此外,提出了一种基于信任的实时切换框架,以在自主和手动运动计划之间进行切换,以在任务安全性和效率之间进行权衡。无死锁和无活锁的算法旨在通过人为循环来保证目标的可达性。提供了一组具有直接人工输入和信任评估的非平凡多机器人仿真,证明了基于信任的多机器人符号运动计划方法的成功实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号