首页> 美国卫生研究院文献>Springer Open Choice >Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins
【2h】

Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins

机译:Proteus:随机森林分类器预测内在无序蛋白中从无序到有序的过渡结合区域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The focus of the computational structural biology community has taken a dramatic shift over the past one-and-a-half decades from the classical protein structure prediction problem to the possible understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder (IDPR). The current interest lies in the unraveling of a disorder-to-order transitioning code embedded in the amino acid sequences of IDPs/IDPRs. Disordered proteins are characterized by an enormous amount of structural plasticity which makes them promiscuous in binding to different partners, multi-functional in cellular activity and atypical in folding energy landscapes resembling partially folded molten globules. Also, their involvement in several deadly human diseases (e.g. cancer, cardiovascular and neurodegenerative diseases) makes them attractive drug targets, and important for a biochemical understanding of the disease(s). The study of the structural ensemble of IDPs is rather difficult, in particular for transient interactions. When bound to a structured partner, an IDPR adapts an ordered conformation in the complex. The residues that undergo this disorder-to-order transition are called protean residues, generally found in short contiguous stretches and the first step in understanding the modus operandi of an IDP/IDPR would be to predict these residues. There are a few available methods which predict these protean segments from their amino acid sequences; however, their performance reported in the literature leaves clear room for improvement. With this background, the current study presents ‘Proteus’, a random forest classifier that predicts the likelihood of a residue undergoing a disorder-to-order transition upon binding to a potential partner protein. The prediction is based on features that can be calculated using the amino acid sequence alone. Proteus compares favorably with existing methods predicting twice as many true positives as the second best method (55 vs. 27%) with a much higher precision on an independent data set. The current study also sheds some light on a possible ‘disorder-to-order’ transitioning consensus, untangled, yet embedded in the amino acid sequence of IDPs. Some guidelines have also been suggested for proceeding with a real-life structural modeling involving an IDPR using Proteus.Electronic supplementary materialThe online version of this article (doi:10.1007/s10822-017-0020-y) contains supplementary material, which is available to authorized users.
机译:在过去的十五年中,计算结构生物学界的关注点已从经典的蛋白质结构预测问题发生了巨大的变化,逐渐转变为对内在无序蛋白质(IDP)或包含无序区域的蛋白质(IDPR)的可能理解)。当前的兴趣在于解开嵌入在IDP / IDPR的氨基酸序列中的无序转换代码。蛋白质紊乱的特点是具有大量的结构可塑性,使其与不同的伴侣结合时混杂,在细胞活动中具有多功能性,在类似于折叠的熔融小球的折叠能态中非典型。而且,它们参与几种致命的人类疾病(例如,癌症,心血管和神经退行性疾病)使其成为有吸引力的药物靶标,并且对于疾病的生化理解很重要。对国内流离失所者的结构整体的研究相当困难,特别是对于瞬态相互作用而言。当绑定到结构化合作伙伴时,IDPR会在组合系统中适应有序构象。经历这种从无序到有序转变的残基称为蛋白残基,通常在短的连续延伸中发现,了解IDP / IDPR的作案手法的第一步是预测这些残基。有几种可用的方法可从它们的氨基酸序列预测这些蛋白片段。但是,文献中报道的性能仍然有待改进。在此背景下,本研究提出了“ Proteus”,这是一种随机森林分类器,可预测残基与潜在的伴侣蛋白结合后发生从无序到有序转变的可能性。该预测基于可以仅使用氨基酸序列即可计算出的特征。与现有方法相比,Proteus预测真实阳性率是次佳方法的两倍(55%vs. 27%),并且在独立数据集上的准确性要高得多。当前的研究还阐明了可能的“无序转化”共识,这种纠缠不清但仍嵌入IDP的氨基酸序列中。还提出了一些建议,以进行使用Proteus进行涉及IDPR的真实结构建模。电子补充材料本文的在线版本(doi:10.1007 / s10822-017-0020-y)包含补充材料,可用于授权用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号