首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach
【2h】

Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach

机译:在儿科试验中处理差差:使用贝叶斯方法进行仿真研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the conduction of trials, a common situation is related to potential difficulties in recruiting the planned sample size as provided by the study design. A Bayesian analysis of such trials might provide a framework to combine prior evidence with current evidence, and it is an accepted approach by regulatory agencies. However, especially for small trials, the Bayesian inference may be severely conditioned by the prior choices. The Renal Scarring Urinary Infection (RESCUE) trial, a pediatric trial that was a candidate for early termination due to underrecruitment, served as a motivating example to investigate the effects of the prior choices on small trial inference. The trial outcomes were simulated by assuming 50 scenarios combining different sample sizes and true absolute risk reduction (ARR). The simulated data were analyzed via the Bayesian approach using 0%, 50%, and 100% discounting factors on the beta power prior. An informative inference (0% discounting) on small samples could generate data-insensitive results. Instead, the 50% discounting factor ensured that the probability of confirming the trial outcome was higher than 80%, but only for an ARR higher than 0.17. A suitable option to maintain data relevant to the trial inference is to define a discounting factor based on the prior parameters. Nevertheless, a sensitivity analysis of the prior choices is highly recommended.
机译:在试验的传导中,常见情况与招聘研究设计提供的计划样本大小的潜在困难有关。对这种试验的贝叶斯分析可能提供框架,以将现有证据与当前证据相结合,并通过监管机构是一种接受的方法。然而,特别是对于小型试验,贝叶斯推断可能被先前选择严重调节。肾病泌尿急尿感染(救援)审判,是由于折予刑侦,作为早期终止候选人的儿科试验,作为调查事先选择对小型试验的影响的动机示例。通过假设50个场景结合不同的样本尺寸和真正的绝对风险减少(ARR)来模拟试验结果。通过在Beta Power之前的0%,50%和100%折扣因子上通过贝叶斯方法分析模拟数据。小型样本上的信息推断(0%折扣)可能会产生数据不敏感的结果。相反,50%的折扣因子确保确认试验结果的可能性高于80%,但仅适用于高于0.17的ARR。保持与试验推断相关的数据的合适选择是根据先前参数来定义折扣系数。然而,强烈建议使用对先前选择的敏感性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号