首页> 外文会议>The 2nd International Conference on Bioinformatics and Biomedical Engineering(iCBBE 2008)(第二届生物信息与生物医学工程国际会议)论文集 >A Bayesian Approach to Weibull Survival Model for Clinical Randomized Censoring Trial Based on MCMC Simulation
【24h】

A Bayesian Approach to Weibull Survival Model for Clinical Randomized Censoring Trial Based on MCMC Simulation

机译:基于MCMC模拟的临床随机删失试验的Weibull生存模型的贝叶斯方法

获取原文

摘要

Survival analysis for randomized censored data is common in clinical trial. Among various survival models proposed to deal with such censoring, Weilbull regression model is widely used as one of accelerated failure time models, because it's flexible to suit different applications. It's well known that Bayesian analysis has the advantage in dealing with censored data and small sample over frequentist methods. Therefore, this paper presents the Weibull regression model for randomized censored data from Bayesian perspective, and then computes the Bayesian estimator based on the Markov Chain Monte Carlo (MCMC) method. The Gibbs sampling is proposed to simulate the Markov chain of parameters' posterior distribution dynamically, which avoids the calculation of complex integrals of the posterior distribution effectively. Finally the simulation with real clinical data of lymph sarcoma is presented. The whole procedure is implemented by the freely available software WinBUGS.
机译:随机检查数据的生存分析在临床试验中很常见。在针对这种检查提出的各种生存模型中,Weilbull回归模型被广泛用作加速失效时间模型之一,因为它可以灵活地适应不同的应用。众所周知,贝叶斯分析在处理审查数据和少量样本方面比频频方法具有优势。因此,本文从贝叶斯的角度提出了随机删失数据的Weibull回归模型,然后基于马尔可夫链蒙特卡洛(MCMC)方法计算贝叶斯估计量。提出了Gibbs采样来动态模拟参数的后验分布的马尔可夫链,从而有效地避免了后验分布的复杂积分的计算。最后,给出了具有实际淋巴肉瘤临床数据的模拟。整个过程由免费软件WinBUGS实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号