首页> 外文期刊>Journal of statistical computation and simulation >Comparison between Bayesian approach and frequentist methods for estimating relative risk in randomized controlled trials: a simulation study
【24h】

Comparison between Bayesian approach and frequentist methods for estimating relative risk in randomized controlled trials: a simulation study

机译:随机对照试验中估计相对风险的贝叶斯方法和频度方法之间的比较:模拟研究

获取原文
获取原文并翻译 | 示例

摘要

Relative risks (RRs) are often considered as preferred measures of association in randomized controlled trials especially when the binary outcome of interest is common. To directly estimate RRs, log-binomial regression has been recommended. Although log-binomial regression is a special case of generalized linear models, it does not respect the natural parameter constraints, and maximum likelihood estimation is often subject to numerical instability that leads to convergence problems. Alternative methods for solving log-binomial regression convergence problems have been proposed. A Bayesian approach also was introduced, but the comparison between this method and frequentist methods has not been fully explored. We compared five frequentist and one Bayesian methods for estimating RRs under a variety of scenario. Based on our simulation study, there is not a method that can perform well based on different statistical properties, but COPY 1000 and modified log-Poisson regression can be considered in practice.
机译:在随机对照试验中,相对风险(RRs)通常被视为首选的关联度量,尤其是在相关的二元结局很常见时。为了直接估计RR,建议使用对数二项回归。尽管对数二项式回归是广义线性模型的一种特殊情况,但它不考虑自然参数约束,并且最大似然估计经常受到数值不稳定性的影响,从而导致收敛问题。已经提出了解决对数二项式回归收敛问题的替代方法。也介绍了贝叶斯方法,但是这种方法和频繁使用的方​​法之间的比较还没有得到充分的探索。我们比较了五种频繁使用的方​​法和一种贝叶斯方法来估计各种情况下的RR。根据我们的模拟研究,没有一种方法可以根据不同的统计属性来实现良好的性能,但是在实践中可以考虑使用COPY 1000和修正的log-Poisson回归。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号