首页> 美国卫生研究院文献>Computational and Structural Biotechnology Journal >Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase
【2h】

Can constraint network analysis guide the identification phase of KnowVolution? A case study on improved thermostability of an endo-β-glucanase

机译:可以约束网络分析指导知识识别阶段?提高内部β-葡聚糖酶热稳定性的案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellulases are industrially important enzymes, e.g., in the production of bioethanol, in pulp and paper industry, feedstock, and textile. Thermostability is often a prerequisite for high process stability and improving thermostability without affecting specific activities at lower temperatures is challenging and often time-consuming. Protein engineering strategies that combine experimental and computational are emerging in order to reduce experimental screening efforts and speed up enzyme engineering campaigns. Constraint Network Analysis (CNA) is a promising computational method that identifies beneficial positions in enzymes to improve thermostability. In this study, we compare CNA and directed evolution in the identification of beneficial positions in order to evaluate the potential of CNA in protein engineering campaigns (e.g., in the identification phase of KnowVolution). We engineered the industrially relevant endoglucanase EGLII from Penicillium verruculosum towards increased thermostability. From the CNA approach, six variants were obtained with an up to 2-fold improvement in thermostability. The overall experimental burden was reduced to 40% utilizing the CNA method in comparison to directed evolution. On a variant level, the success rate was similar for both strategies, with 0.27% and 0.18% improved variants in the epPCR and CNA-guided library, respectively. In essence, CNA is an effective method for identification of positions that improve thermostability.
机译:纤维素酶是工业上重要的酶,例如,在生产生物乙醇中,在纸浆和造纸工业,原料和纺织品中。热稳定性通常是高过程稳定性的先决条件,并且在不影响较低温度下的特定活动的情况下提高热稳定性是挑战性的,并且通常耗时。结合实验和计算的蛋白质工程策略是出现的,以减少实验筛查努力和加速酶工程竞选活动。约束网络分析(CNA)是一种有前途的计算方法,其识别酶中的有益位置,以提高热稳定性。在这项研究中,我们将CNA和定向演变进行了比较在鉴定有益位置,以评估蛋白质工程运动中CNA的潜力(例如,在知识识别阶段)。我们在工业相关的内葡聚糖酶EGLII从青霉霉素朝向提高的热稳定性设计。从CNA方法中,获得六种变体,其热稳定性最高2倍。与指导的演化相比,整体实验负担降低至40%的CNA方法。在变体水平上,两种策略的成功率均相似,分别为EPPCR和CNA引导库中的0.27%和0.18%改善的变体。从本质上讲,CNA是识别提高热稳定性的位置的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号