首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Path Planning for Non-Circular Non-Holonomic Robots in Highly Cluttered Environments
【2h】

Path Planning for Non-Circular Non-Holonomic Robots in Highly Cluttered Environments

机译:高度混乱环境中非圆形非完整机器人的路径规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an algorithm for finding a solution to the problem of planning a feasible path for a slender autonomous mobile robot in a large and cluttered environment. The presented approach is based on performing a graph search on a kinodynamic-feasible lattice state space of high resolution; however, the technique is applicable to many search algorithms. With the purpose of allowing the algorithm to consider paths that take the robot through narrow passes and close to obstacles, high resolutions are used for the lattice space and the control set. This introduces new challenges because one of the most computationally expensive parts of path search based planning algorithms is calculating the cost of each one of the actions or steps that could potentially be part of the trajectory. The reason for this is that the evaluation of each one of these actions involves convolving the robot’s footprint with a portion of a local map to evaluate the possibility of a collision, an operation that grows exponentially as the resolution is increased. The novel approach presented here reduces the need for these convolutions by using a set of offline precomputed maps that are updated, by means of a partial convolution, as new information arrives from sensors or other sources. Not only does this improve run-time performance, but it also provides support for dynamic search in changing environments. A set of alternative fast convolution methods are also proposed, depending on whether the environment is cluttered with obstacles or not. Finally, we provide both theoretical and experimental results from different experiments and applications.
机译:本文提出了一种算法,该算法可以解决在大型且混乱的环境中为细长的自主移动机器人规划可行路径的问题。所提出的方法是基于对运动学可行的高分辨率晶格状态空间进行图搜索的。但是,该技术适用于许多搜索算法。为了允许算法考虑使机器人经过狭窄通道并接近障碍物的路径,将高分辨率用于晶格空间和控制集。这带来了新的挑战,因为基于路径搜索的规划算法在计算上最昂贵的部分之一就是计算可能成为轨迹一部分的每个动作或步骤的成本。这样做的原因是,对每个动作的评估都涉及将机器人的足迹与局部地图的一部分进行卷积,以评估发生碰撞的可能性,该操作随着分辨率的提高而呈指数增长。本文介绍的新颖方法通过使用一组离线预计算地图来减少对这些卷积的需求,当新信息来自传感器或其他来源时,这些地图会通过部分卷积进行更新。这不仅提高了运行时性能,而且还为不断变化的环境中的动态搜索提供了支持。根据环境是否杂乱无章,还提出了一组替代的快速卷积方法。最后,我们提供了来自不同实验和应用的理论和实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号