首页> 美国卫生研究院文献>PLoS Computational Biology >A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes
【2h】

A Bio-inspired Collision Avoidance Model Based on Spatial Information Derived from Motion Detectors Leads to Common Routes

机译:基于从运动检测器获得的空间信息的生物启发式避碰模型导致了通用路线

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Avoiding collisions is one of the most basic needs of any mobile agent, both biological and technical, when searching around or aiming toward a goal. We propose a model of collision avoidance inspired by behavioral experiments on insects and by properties of optic flow on a spherical eye experienced during translation, and test the interaction of this model with goal-driven behavior. Insects, such as flies and bees, actively separate the rotational and translational optic flow components via behavior, i.e. by employing a saccadic strategy of flight and gaze control. Optic flow experienced during translation, i.e. during intersaccadic phases, contains information on the depth-structure of the environment, but this information is entangled with that on self-motion. Here, we propose a simple model to extract the depth structure from translational optic flow by using local properties of a spherical eye. On this basis, a motion direction of the agent is computed that ensures collision avoidance. Flying insects are thought to measure optic flow by correlation-type elementary motion detectors. Their responses depend, in addition to velocity, on the texture and contrast of objects and, thus, do not measure the velocity of objects veridically. Therefore, we initially used geometrically determined optic flow as input to a collision avoidance algorithm to show that depth information inferred from optic flow is sufficient to account for collision avoidance under closed-loop conditions. Then, the collision avoidance algorithm was tested with bio-inspired correlation-type elementary motion detectors in its input. Even then, the algorithm led successfully to collision avoidance and, in addition, replicated the characteristics of collision avoidance behavior of insects. Finally, the collision avoidance algorithm was combined with a goal direction and tested in cluttered environments. The simulated agent then showed goal-directed behavior reminiscent of components of the navigation behavior of insects.
机译:搜寻或瞄准目标时,避免碰撞是生物学和技术上任何移动代理的最基本需求之一。我们提出了一种避免碰撞的模型,该模型的灵感来自昆虫的行为实验以及翻译过程中经历的球形眼睛的光流特性,并测试了该模型与目标驱动行为的相互作用。昆虫,例如苍蝇和蜜蜂,通过行为,即通过采用飞行和凝视控制的视线策略,主动地将旋转和平移的光流分量分开。在平移期间,即在声相间阶段经历的视流包含有关环境的深度结构的信息,但是该信息与自运动有关。在这里,我们提出一个简单的模型,通过使用球面眼的局部特性从平移光流中提取深度结构。在此基础上,计算可确保避免碰撞的代理的运动方向。人们认为飞行昆虫可以通过相关型基本运动检测器来测量光流量。除了速度外,它们的响应还取决于对象的纹理和对比度,因此,不能真实地测量对象的速度。因此,我们最初使用几何确定的光流作为防撞算法的输入,以表明从光流推断出的深度信息足以解决闭环条件下的防撞问题。然后,在其输入中使用生物启发的相关类型基本运动检测器对防撞算法进行了测试。即使这样,该算法仍成功避免了碰撞,此外,它还复制了昆虫的避免碰撞行为的特征。最终,将防撞算法与目标方向相结合,并在混乱的环境中进行了测试。然后,模拟的代理显示出目标导向的行为,使人联想到昆虫的航行行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号