首页> 美国卫生研究院文献>Frontiers in Genetics >Unleashing the power of meta-threading for evolution/structure-based function inference of proteins
【2h】

Unleashing the power of meta-threading for evolution/structure-based function inference of proteins

机译:释放元线程的功能以进行蛋白质基于进化/结构的功能推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein threading is widely used in the prediction of protein structure and the subsequent functional annotation. Most threading approaches employ similar criteria for the template identification for use in both protein structure and function modeling. Using structure similarity alone might result in a high false positive rate in protein function inference, which suggests that selecting functional templates should be subject to a different set of constraints. In this study, we extend the functionality of eThread, a recently developed approach to meta-threading, focusing on the optimal selection of functional templates. We optimized the selection of template proteins to cover a broad spectrum of protein molecular function: ligand, metal, inorganic cluster, protein, and nucleic acid binding. In large-scale benchmarks, we demonstrate that the recognition rates in identifying templates that bind molecular partners in similar locations are very high, typically 70–80%, at the expense of a relatively low false positive rate. eThread also provides useful insights into the chemical properties of binding molecules and the structural features of binding. For instance, the sensitivity in recognizing similar protein-binding interfaces is 58% at only 18% false positive rate. Furthermore, in comparative analysis, we demonstrate that meta-threading supported by machine learning outperforms single-threading approaches in functional template selection. We show that meta-threading effectively detects many facets of protein molecular function, even in a low-sequence identity regime. The enhanced version of eThread is freely available as a webserver and stand-alone software at
机译:蛋白质穿线被广泛用于蛋白质结构的预测和随后的功能注释。大多数线程化方法采用相似的标准进行模板识别,以用于蛋白质结构和功能建模。仅使用结构相似性可能会导致蛋白质功能推断的假阳性率很高,这表明选择功能模板应受到不同的限制。在这项研究中,我们扩展了eThread的功能,eThread是一种最近开发的元线程方法,重点是功能模板的最佳选择。我们优化了模板蛋白质的选择,以涵盖广泛的蛋白质分子功能:配体,金属,无机簇,蛋白质和核酸结合。在大规模基准测试中,我们证明了识别结合相似位置的分子伴侣的模板的识别率非常高,通常为70-80%,但假阳性率却相对较低。 eThread还提供了有关结合分子的化学性质和结合结构特征的有用见解。例如,在仅18%的假阳性率下,识别相似蛋白质结合界面的敏感性为58%。此外,在比较分析中,我们证明了机器学习支持的元线程在功能模板选择方面优于单线程方法。我们显示,即使在低序列同一性机制中,元线程也可以有效检测蛋白质分子功能的许多方面。 eThread的增强版可作为Web服务器和独立软件免费获得,网址为:

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号